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ABSTRACT. Let A denote the class of all functions f analytic in the open unit disc U
with £(0) = 0 = £'(0)-1. Let h be any convex univalent analytic function on U with
h(0) = 1 and Re h(z) > 0 in U. Let g¢ A be fixed. Denote by Sg(h) the class of all

* [
functions f € A such that, g*f(z) # 0 in U and agg*ﬁi(ijl < h(z), z €U (< denote
subordination). It is proved in this paper that the class Sg(h) is closed under
convolution with convex functions. It has also been established that Sg(h) c

s@*g(h) where ¢ is any convex univalent function in A. Four other classes are also
defined and studied using mainly the convex hull method and the methd of differential

subordination.
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1. INTRODUCTION.
Let U = {2: |2| <1 } and H(U) be the class of all holomorphic functions defined
on U. Let A = {feH(U)/£(0) = 0, £'(0) = 1 }. Let f, geH(U) and £(z) = ¥b 2"
0

Then the convolution of f and g is denoted as
* = n
(£*g)(2) gfanbnz .

Let g and GeH(U), g(z) is said to be subordinate to G(z) (written g(z) < G(Z)) in
U if G(z) is univalent in U, g(0) = G(0) and g(U) c G(U). Let S*, K, Q and C denote
the subclass of A consisting of Starlike univalent, convex univalent, Quasi-Convex and
close-to-convex functions respectively. Let M°l denote the class of functions in A

which are o-convex (Mocanu sense) in U.
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As a general reference for the definitions and properties of the above classes the

reader may consult the book by A.W. Goodman [l].
The aim of this paper is to give various subclasses of A, analogous to the classes

S*, K, Q, C and Ma, and to study some properties of the new classes.

2. BASIC THEOREMS AND DEFINITION OF THE NEW CLASSES.
We need the following theorems to prove our main results.

*
THEOREM 2.1 [2]: Let ¢€A be convex univalent, geS and FeH(U) such that ReF(z)

*
> 0 for V zel. Then %gg- lies in the convex hull of F(U).

THEOREM 2.2 [3]: Let B, veC, heH(U) be convex univalent in U with h(0) = 1 and
Re(Bh(z) + v) > 0, V zeU and let

p(z) =1+ Pz + ... € H(U). Then

p(2) + Z B n(2) = p(2) < R(2)

A modification of Theorem 2.2 is given in
THEOREM 2.3 [4): Let B, veC, heH(U) be convex univalent in U with h(0) = 1 and

Re(Bh(z) + V) > 0, V zeU and let qeH(U) with q(0) =1 and q(z) < h(z), V zeU. If
p(z) =1+ Pyz + ... isin H(U), then

p(2) + S ¢ h(2) = p(2) < (2D

To avoid repetition we say once and for all 1in this paper, unless otherwise
specified, g will denote a fixed function in A and h will always denote a convex
univalent function on U with h(0) = 1 and Re h(z) > 0 for V zeU.

DEFINITION 2.1: Let Sg(h) denote the class of all functions fe€A such that

*
(g f)z(z) # 0 in U and satisfying

z(g*f)' (2)
(gD () < M2 @1

DEFINITION 2.2: Let Kg(h) denote the class of all functions feA such that
(g*£)'(z) # 0 in U and satisfying

2(g*f)' ' (z)
L+ 2 < (2.2)

DEFINITION 2.3: Denote by Cg(h) the class of all functions feA such that

*
L&f_:(_z_)_ # 0 for V zeU and satisfying

z(g*f) ' (z)
&) (z) < h(z), V zeU, for some ¥ € Sg(h) (2.3)
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REMARK 2.1: TIf g(z) = z/(1-2)@ (a real) then Sg(h) and Cg(h) coincides with the
classes Sa(h) and Ca(h) respectively introduced in [4]. Kg(h) is the class Ka(h)
1+z

introduced in [5]. For the choice h(z) = 1 the classes Sa(h) and Ka(h) were
investigated by S. Owa et al [6]. If g(z) # e and  h(z) = 29z ,
(1_2)2( -a) 1-2

0 <a<l, then Sg(h) is nothing but the class of pre-~Starlike functions of order a
introduced by Ruschewegh in [7].
1f g(z) is taken as z then Sg(h) is the class A and hence in general functions in

Sg(h) need not be univalent.
DEFINITION 2.4: Let a be any real number. Let K;kh) denote the class of

*
functions €€A such that ( f;(z) # 0 and (g*f)'(z) # 0 in U and

. - z(g*f) ' ' (2) —ay 2(g*f) ' (2)
Jg(a, f(z)) = a(l + (2% 6) " (2) ) + (1-a) (&%) (2) (2.4)

is subordinate to h(z).
REMARK 2.2: When g(z) = z/(1-2)2 K;(h) is the same as K:(h) introduced in

A
[5]. As it can be seen clearly that Kg(h) = Sg(h) and Kg(h) = Kg(h)’ Kg(h) provides
a 'continuous passage' from the class Kg(h) to Sg(h) as a decreases from 1 to O.

DEFINITION 2.5: Let Qg(h) denote the class of all functions feA such that

*
( fi(z) # 0 in U and satisfying for some ¢8Kg(h)

[z(g*f)' (2)]"
CCOHNO) < hz), V zel. (2.5)
REMARK 2.3: When g(z) = z/(1-2)2 we shall denote the class Qg(h) by Qu(h). If

1+2

further a=1 and h(z) = 1z Qa(h) is the class of Quasi-Convex functions introduced

by K.I. Noor and D.K. Thomas [8].

3. MAIN THEOREMS.
*
THEOREM 3.1: If feS (h) and g is a convex function then feSg(h).
PROOF: We have

zf'
z(g*f)'(z) _ (g*zf')(z) (g* =~ £)(2)

(g*£)(2) (g*D) (z) (g*f) (z)
* (]
Since feS (h), RE(E%?£§1) > 0 and g convex, and hence by an application of Theorem A
we get,
z(g*f) '(z)
NCAON < h(z)

which implies feSd(h).
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*
It is a well known fact that K c s* and feK if and only zf'eS , we shall now

extend this fact to the class Sg(h) and Kg(h).
THEOREM 3.2: (i) Kg(h) c Sg(h)

(ii) fEKg(h) if and only if zf‘esg(h)

PROOF : (1) Let p(z) = .E%ggg%%éél , Logarithamic derivative of p(z) and a
nultiplication by z gives
zp'(z) _ z(g*f)'"' (2)
p(z) + o(2) 1+ COIONN 3.1)

If fng(h) then by Definition 2.2 the right side of (3.1), and hence the left side is
subordinate, to h(z). Applying Theorem 2.2 we get, p(z) < h(z) and hence the result

(i). To prove (ii) we have for any two functions f, g€A such that

LE2B(2) 4 o, (exg) (2 * 0.

2graf) (2) o, 2(g*)'(2) (3.2)
(g*zf')*(z) (g*f)'(z)

Now, 1if fng(h) then from (2.2) and (3.2) ES%&%%%%%%&%l < h(z). Therefore

zf'eSg(h). Conversly, if zf'eSg(h), from (2.1) and (3.2),

z(g*f)' ' (2)
1+ (@ D)7 (2) < h(z) and hence fng(h).
REMARK 3.1: For g(z) = 2z/(1-z)2 Theorem 3.1 gives Theorem 3 in [5] as a

particular case.
Next we prove the classes Sg(h) and Kg(h) are closed under coavolutions with

convex univalent functions.
THEOREM 3.3: Let ®cA be convex univalent then for every feSg(h), 0*fesg(h).

*F) Y
PROOF: Let F(z) = Z&:E1(2) 4 fesg(h), then F < h. Now,

(e*D) (=)
2(g*0*)' () | (S*z(g*)')(z) _  (SAE(g*f))(z)
(g%6%6) (2) (#* (g%0) (2) @ (g*D)) (2) °

* *
Since fesg(h), g*feS (h) < S and it follows from Theorem 2.1 that

(o*F(g*f)) (2)
(@ (g*D)) (2) lies in the convex hull of F(U). But F < h and h is convex. Therefore

the convex hull of F(U) is a subset of h(U) and the conclusion follows.
COROLLARY 3.1: Llet ¢€A be convex univalent then for every fng(h), ¢*fng(h).
PROOF: This follows easily from Theorem 3.2 (ii) and Theorem 3.3.
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THEOREM 3.4: Sg(h) c Sb*g(h) for every convex univalent function
¢ with ¢(0) = ¢'(0) = 1.
PROOF: Llet feSg(h), then by Theorem 3.3 &*feS (h). Hence

z(g*v*f)' (z)
_?i}Q*f)(;T_ < h(z). That is fes¢*g(h). Normalizing condition on ¢ are forced

because of the conditions on g's.

COROLLARY 3.2: Kg(h) c Ké*g(h) for every convex univalent function ¢ in A.

PROOF: Follows easily from Theorem 3.2 (ii) and Theorem 3.4.

REMARK  3.2: f glz) = 2/ (1-2)a%1 = K,+1(z) and observing that
* = I . = a-
(hY Ka+1) Ka(z), where hY(z) f oY z with Y = a-l. Then Theorem 3.4 and

Corollary 3.2 reduce to the fact that S,41(h) < S,(h) and K,y (h) ¢ K (h) for
a?»l. These two containment results are proved respectively in [4] and [5].
It follows easily from Definition 2.3 by taking ¥ = f that Sg(h) < Cg(h). We

now prove that the class Cg(h) is closed under convolution with a convex function.
THEOREM 3.5: Let fng(h) with respect to a function fleSJh). Then for every

convex univalent function ®€4A, O*fng(h) with respect to 0*flesg(h).

z(g*f) '(z)
PROOF: 1t is clear from Theorem 3.3 that &*f €S (h). Let F(z) = .
1 g (g*fl)(z)

Since fecg(h) with respect to flesg(h), it follows that F(z) < h(z), V zeU, in

*
particular Re F(z) > 0, also we have g*fles . Now

z(g*®*£) ' (2) - (P*z(g*£)") (2) . (d?*F(g*fl))(z)
(g*O*fl)(z) (°*(g*f1)) (z) (¢*(g*f1)) (z) °

Applying Theorem 2.1 we get Theorem 3.5.

REMARK 3.3: If g(z) = z/(1-z)3, and ¢ = hY(z), we get Theorem 4 of [4] as a
particular case of Theorem 3.5.

THEOREM 3.6: Cg(h) < C¢*g(h) for every convex univalent function ®eA.

PROOF: It follows exactly in the same way as Theorem 3.4 and is hence omitted.

REMARK 3.4: 1If g(z) = z/(1-2)2 and &(2) = hY(z) with Y = a-1 we get Theorem 3 of
[4].

THEOREM 3.7: (i) Let a > 0, then KZ(h) < 5,

(11) for a > B >0, K:(h) c xﬁ(n).
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) z(g*f) ' (2) ) azp' (z)
“PROOF. (i) Let p(z) = "?ﬁi?YTZT' » then J (a3£(2)) = p(2) +-—~§(;7— . Since
fEKg(h) it follows that J“(u; £(z)) < h(z). Now an application of Theorem 2.2
o

Zgives that p(z) < h(z). Hence fesu(h).

(ii) The case B =0 is contained in (i) so assune B > 0. Now ,

' = (1ogy 2(8*6)"(2) Z(grD) ' (2).
I (B3 £(2)) = (=B) =opyy ™ * B0+ S 5ahyviyy

z(g*f)'(z) | B

B
= 0= TG@DH@ T

Jg(a; £(2))

by (1) ‘Eg:g;;ii) <h(z) and by assumption Jg(a; £(2z)) <h(z) and hence

Jg(B; £(z)) < h(z) (as B/a < 1). Therefore szE(h).

+
REMARK 3.5: If g(z) = z/(l-z) and h(z) = ll_—:-the first part of Theorem 3.7

reduces to the result due to Mocanu and Reade [9] that all a-convex functions are
starlike univalent and the second part of Theorem 3.7 reduces to a result of Sakaguchi
[10]. 1If g(z) = z/(1-2)2 then Theorem 3.7 gives Theorem 6 of Padmanabhan and Manjini
[5] as a particular case.

THEOREM 3.8: (i) Kg(h) < Qg(h) c Cg(h)

(ii) fng(h) if and only 1if zf'eCc(h).

PROOF: (i) By taking f = ¢ it follows easily from the definition of the class
Qg(h) that Kg(h) c Qg(h). To prove the other inclusion, set

p(z) - z(g*f) '(2) Then

(g*¢) (2) °
zp' (2) . lz (g*f)'(2)]'

p(z) + 22 %0 ' (2 (&%) (2) (3.3)
(g*9) (2)

If fng(h) then there exists a &€ Kg(h) such that the right hand side of (3.3) and
hence the left hand side of (3.3) is subordinate to h(z).

* A
Since @EKg(h) c Sg(h) we have Re zgg*:;(i;) >0 in U, Hence applying Theorenm
2.3 we get p(z) <h(z). That is fECa(h).
To prove (ii) we have for any c,t:wo functions f and @ satisfying the non-zero

convolution conditions that

z [2(g*f)'(2)]' _ z(g*zf')'(2)
z(g*®) ' (z) (g*ze')(z) °

(3.4)
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Now, if fCQg(h) with respect to a function ®eK (h), then the left hand side of 3.4
is subordinate to h(z). Now zO'ESg(h) by Theorem 3.2 (ii) and hence by the
definition of Cg(h) and by (3.4) zf'ecg(h). Conversely, if zf'ng(h), then there

exists a function Qlisg(h) such that

2(ghaf') " (2)

(s% () 3 ")

Now there exists a QSKg(h) such that z9' = ¢1 and hence the RHS of 3.4 1is
subordinate to h(z) which implies the LHS of 3.4 is subordinate to h(z) which in turn
gives that feQa(h).

REMARK 3.6: When g(z) = z/1-z Theorem 3.8 reduces to Theorem 1 of Noor and Thomas
[8]. By Theorems 3.2 (i) and 3.8 and from the observation we made just before Theoren

3.5 we get the following inclusions

Qg(h)- Cg(h)

where, the direction of the 'arrows' indicate the respective inclusions.

THEOREM 3.9: If fng(h), then for every convex univalent function
deA, O*fng(h).

THEOREM 3.10: Q (h) c Q@*g(h) for every convex univalent function ®€A, in
particular Qa+l(h) c Qa(h) for a > 1.

PROOF: The proofs of the above Theorems 3.9 and 3.10 are omitted because it will
follow from 3.8 and the corresponding theorems for the class Cg(h).
4. CONCLUDING REMARKS.

It would be interesting to find a necessary and sufficient condition on the

function g(z) so that f*g univalent implies f is univalent.
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