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ABSTRACT. Let Q be the additive group of rational numbers and let % be the

additive semigroup of all nonempty finite subsets of Q. For X e %, define AX

to be the basis of <X - min(X)> and BX the basis of <max(X) - X>. In the

greatest semilattice decomposition of X, let  d(X) denote the archimedean
component containing X. In this paper we examine the structure of % and determine
its greatest semilattice decomposition. In particular, we show that for X,Y e @,
A(X) = o(Y) if and only if AX = AY and BX = BY' Furthermore, if X is a

non-singleton, then the idempotent-free «(X) is isomorphic to the direct product of

a power joined subsemigroup and the group Q.
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1. INTRODUCTION.

In [1] we determined the structure of the semigroup of nonempty finite subsets of
integers. In this paper we extend the results of [1] for the semigroup of nonempty
finite subsets of rationals. In particular, we give a complete description of its
greatest semilattice decomposition. We also propose an isomorphism problem. It is
assumed the reader is familiar with the basic notions on commutative semigroups and
greatest semilattice decompositions; otherwise refer to Clifford and Preston [2] and
Petrich [3]. We begin with some notation and several definitions.

Let Q be the group of rational numbers, Z the group of integers, and define
% to be the semigroup consisting of all nonempty finite subsets of Q with the
operation

A+B=f{a+b:aeA beB}, A, Be % .
A singleton element of % will be identified with the rational number it contains.
The semigroup % 1is a commutative countable semigroup with identity element O.
Let X = (al/bl. a2/b2....,an/bn} e %, where a;/b; <ol a /b and each a.,

bi are relatively prime integers, (if X contains an integer x, then express x

as x/1). Define min(X) = al/bl. max(X) = an/bn’ and let Q(X) denote the least
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(positive) common multiple of the integers bl. b2""'bn' If X consists only of
integers, then define gcd(X) to be the greatest (non-negative) common divisor of
the integers in X, where gcd(0) =0 and g (X U {0}) = ged(X). Let Z_ be the

set of positive integers and define the integer interval [a.b] = {x e Z : a { x { b}
if a,b e Z with a {(b. For Ue %, let <U> denote the semigroup gecnerated by

the set U, and for m e Z+, r e Q define
mU =U +-+++ U, U = {ru : u e U}, and Zm = Z/<{-m,m>.

m
In the greatest semilattice decomposition of R, let 4(X) denote the
archimedean component containing X. Define the partial order < on the (lower)
semilattice as: o(X) < #(Y) if and only if nX =Y + W for some We % and n e
Z, (equivalently: U + V e d(X) for some (all) Ue 4(X) and Ve 4(Y)). Note that

4(0) consists of all the singletons in % and o(0) = Q. Moreover, since O is
clearly the only idempotent in %, evidently «(X) 1is idempotent-free if and only
if X 1is a non-singleton. We will show later in Theorem 2.1 that there are in fact
infinitely many archimedean components in the greatest semilattice decomposition of
R.

For X e %, define Ay to be the basis of <X - min(X)> and B, the basis of

<max(X) - X>. Also, if X 1is a non-singleton define id(X) = min(Ax\{O}) and
fd(X) = min(BX\{O}). Note that Q(AX) = 0(X-x) = Q(BX) for all x e X. When X is
a non-singleton, Ax and BX have at most 1 + Q(Ax)id(X) and l+Q(Bx)fd(X)
elements, respectively (if X 1is a singleton then Ax = BX = {0}). We close this

introduction with an example. Let X = {-3/10, -1/5, 4/5, 11/6, 2}. We wish to

determine Ay, and By. First, 0(X) = 30, so X = 1/30 »* {-9,-6,24,55,60}. Thus

X - min(X) = 1/30 % {0,3,33,64,69} and
max(X) - X = 1/30 % {0,5,36,66,69}.

Consequently, AX = 1/30 * {0,3,64} = {0, 1/10, 32/15} and BX = 1/30 * {0,5,36,69}

= {0,1/6,6/5,23/10}.

2. STRUCTURE OF &.

In this section we examine the structure of % by determining its greatest
semilattice decomposition and describing the structure of its archimedean components.
The first result gives a necessary and sufficient condition for two elements of &

to be in the same archimedean component.

THEOREM 2.1. For X.Y e %, #(X) = d(Y) if and only if Ay = Ay and By =B

PROOF. Let X,Y e # and without loss of generality assume min(X) = min(Y) = O.
Let U and V be such that U = 0(X)*X and V = Q(Y)»%Y. Note that U and V are
finite sets of integers. Suppose AX = AY and BX = BY' Since min(X) = min(Y) =
0, this implies 2(X) = Q(AX) = Q(AY) = 0(Y). Hence AU = Av and BU = BV. By
[1]. s(U) = 4(V) and therefore it follows that o(X) = «A(Y).

Conversely, suppose o(X) = o#(Y). There exist n, m e Z, and S, Te % such
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that
nX=Y+S and mY =X+ T .
Since necessarily min(S) = min(T) = O, evidently

AY CYCY+SC <Ax>
and likewise Ax C <AY>. Consequently, <Ax> = (AY> and by definition this implies

Ax = AY. Similarly Bx = BY and this completes the proof.

Using the above theorem we can determine when two archimedean components are

related with respect to the order on the semilattice.

THEOREM 2.2. The following are equivalent.
(1) 4(X) < «(Y).

(ii) AY Cc (AX> and BY c <BX>.
(1i1) Ay = Ay and By,y =By

PROOF. Suppose o(X) < 4(Y). There exist Ue & and n e Z, such that

n(X -~ min(X)) = Y - min(Y) + U.

Since min(U) = O,

Ay €Y - min(Y) CY - min(Y) + UC <A .
Similarly BY Cc <Bx>. Suppose next that assertion (ii) holds. Then
Y - min(Y) € <Ay> € <A
and thus

Ay CX + Y - min(X +Y) C <Ap.

X+Y
X +Y e A(X); that is, o(X) < £(Y) and the proof is complete.

Hence AX+Y = AX. Likewise B = BX‘ Finally, if (iii) holds, then by Theorem 2.1

Since AY and BY are finite sets, it is relatively easy to determine when

4(X) € 4(Y) wusing Theorem 2.2(ii). For example, let W = {-10/7,-8/7, 22/7, 33/7,
5}, X = {1/7, 5/21, 29/21, 68/21, 23/7}, and Y = {-15, -13, 8, 28, 30}. Then Q(W)
=7, 9(X) =21, and Q(Y) = 1. Thus

W - min(W) = 1/7 % {0,2,32,43,45}, max(W) - W = 1/7 % {0,2.13,43,45} ,

X - min(X) = 1/21 % {0,2,26,65,66}, max(X) - X = 1/21 % {0,1,40,64,66},

Y - min(Y) = {0.2,23,43,45}, and max(Y) - Y = {0,2,22,43,45}.

Hence, Aw = {0, 2/7, 43/7}, AX = {0, 2721, 65/21}, AY = {0,2,23}. BW = {0.2/7,13/7),

BX = {0, 1/21}, and BY = {0.2,43}. Therefore, it follows that A(X) < A(W) < s(Y)
with A(X) # 4(W) and o(W) # 4(Y).

Next, for X € % define dO(X) = {Y e «(X) : min(Y) = 0}. It is clear that
dO(X) is a subsemigroup of «(X). In general, elements of d(X) can be uniquely
Hence it follows that

expressed in the form U + q, where U e dO(X) and q e Q.

4(X) = do(X) ® Q. Moreover, we have the following
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THEOREM 2.3. The idempotent-free archimedean component «(X)., where X is a

non-singleton, is isomorphic to the direct product of the idempotent-free power
joined subsemigroup dO(X) and the group Q.

PROOF. Let X be a non-singleton with min(X) = O and let q be a non-zero

rational number. We will first show that dO(X) = do(q*X) under the isomorphism

which maps U to qg¥U. First, if Ue dO(X), then there exist Ul‘ X1 e % and n,

m e Z+ such that

nX =U + U1 and mU = X + X1 .
Hence

n(g*X) = q*U + q*Ul and
m(@U) = X + qan1

giving q*¥U e do(q*X). It suffices therefore to show that for each V e o (g*¥X)

ol

there exists V. e QO(X) such that V = g*V Let Ve do(q*X). Then there exist

1
§$, Te® and s, t e Z, such that

1

q*¥(sX) =V+S and tV =X+ T.

Let V., S., and T1 be such that V = gV, S = q*Sl. and T = q*Tl. Then

1 1 1’

sX = V1 + S1 and tV1 =X + Tl.
Hence V1 € dO(X) and consequently dO(X) = do(q*X) for each non-zero rational q.
In particular, dO(X) = O(Q(X)*X). Since 2(X)*X is a set of integers, by [1]
dO(Q(X)*X) is power joined. Therefore dO(X) is power joined and this completes

the proof.

COROLLARY 2.1. For X e %, d(X) = o(g*X) for each non-zero rational number q.

The following equivalence relation on % is called the $-relation on % (sce

[2] and [3] for more on the $-relation):
X $Y if and only if X =Y+ Uand Y =X+ V
for some U, Ve %.
However, observe that if X = Y + U and Y = X + V, then X and Y must
necessarily be of the same cardinality since X.Y e %; that is, evidently U and V
are singletons. Hence
X $Y if and only if X =Y + q for some q e Q.

Therefore, in % the $-class of X 1is the set of all rational translates of X
(i.e. elements of the form X + q, q € Q).

Let denote the least semilattice congruence on %. Define an equivalence

Po
relation m on % by

X7Y if and only if nX = mY for some n, me Z+.

Using Theorem 2.3 we immediately have
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THEOREM 2.5. The least semilattice congruence on % is Py = $ 7 % That i

X Py Y if and only if X ¢ XO T YO $Y for some X YO e %.

0
Next we look more deeply into the structure of «(X). The structure of «(0) is
clear since o(0) = Q. Using the above results, evidently Y e o(X) if and only if

Y-min(Y) = dx U Y1 where Y1 c (dx> and max(Y)-Y = BX u Y2 where Y, C <By,>.

More precisely we have the following direct consequence of Theorem 3.2 from [1].

THEOREM 2.6. Let X be a non-singleton and U be such that X-min(X) = gxU,
where g = gcd(Q(Ax)*Ax)/Q(Ax). Define Ai ={x e <AU> :x E1i (mod a)} and Bj = {x

€ <BU> t x = j (mod b)} for i e [0.,a-1], j e [0, b-1], where a = id(U) and b =
fd(U). Let ¢ = max {min(Ai) :1ie[0,a-1]} and d = max (min(Bi) 1 e [0,b-1]}
Then Y e A(X) if and only if there exist Ve % and n, e Z, such that Y-min(Y)

= g*¥V and for all integers n > n

¢
a-1
nV = U {xe A, i x<cal U [c-a+1l, nmax(V) + b-d-1]

i=0

b-1

U U {mmax(V) - x : x € B,, x < d-b}
: i
i=0

= <A N (amax(V) - < Bp) .

Next we reproduce several definitions and facts from Tamura [4] that we will use
in the next theorem. Let T be an additively denoted idempotent-free commutative

archimedean semigroup. For fixed b e T, define a congruence on T by

Pp
Xppy if and only if nb+ x =mb +y for some n,me Z+.
Then T‘/pb = Gb is a group called the structure group of T determined by the

standard element b. Also, define a compatible partial order < on T by

b
x {y if and only if x =nb +y for some ne Z .
b
Then T =U TA' equivalently T/pb = {Tx}, ANe Gb' where each TA is a discrete

AeGb

tree without smallest element with respect to < , (a discrete tree, with respect to

<, is a lower semilattice such that for any ¢ < d the set {x : ¢ ¢ x <d} isa
b b b

finite chain). Finally, define a relation m on T as follows:

xny if and only if nb + x =nb +y for some n e Z+.
The relation 7 is the least cancellative congruence on T. Let Q+ denote the set

of positive rational numbers.

THEOREM 2.7. Let A e % be a non-singleton with min(A) = O and
g = gcd(Q(A)*A)/2(A). The structure group of dO(A) determined by the standard



86 R. SPAKE

m—-1
element A is Zm. where m = max(A)/g. Moreover, .vdo(A) = U sﬂi where sdi = {X
i=0
e st(A) : max(X)/g = i(mod m)} is a discrete tree without smallest element with
respect to < . Furthermore, the structure group of  #(A) determined by the

A

standard element A is Q@& Zm.
PROOF. This follows from [1] since MO(A) = sﬂo(l/g*A).

Using Theorem 2.7 we have the immediate

PROPOSITION 2.8. Let A be a non-singleton. The homomorphism h : dO(A) - Q,

defined by h(X) = max(X) i

o)

greatest cancellative homomorphism. That is, t

the
relation n on dO(A) defined by

XnY if

the least cancellative congruence. Moreover, the relation o on 4(A) defined

d only if max(X) = max(Y)

.
n

B-Ia

X oY if and only if min(X) = min(Y) and
max(X) = max(Y)
is t least cancellative congruence. The semigroups sﬂo(A)/n and d(A)/o0 are

idempotent-free commutative archimedean cancellative semigroups.

For a description of the greatest cancellative homomorphic image of do(A) we

direct the reader to [1]. We close this report with an open isomorphism problem.

Any partial solutions would be appreciated.

PROBLEM. For X,Y € %, under what conditions will «(X) be isomorphic to
#(Y)? See Theorem 5.5 of [5] for some related results and also recall Corollary 2.4.
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