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ABSTRACT. New classification of analytic functions with negative coefficients is

given by using the coefficients inequality, that is, new subclass A(p,n,Bk) of

analytic functions with negative coefficient is defined. The object of the present

paper is to prove various distortion theorems for functions in A(p,n,Bk) and for

fractional calculus of functions belonging to A(p,n,Bk). Further, some properties of

the class A(p,n,Bk) are shown.
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I. INTRODUCTION.

Let A denote the class of functions of the form
p,n

kf(z) zp- . akz (ak O; p N; n N) (I.I)
k=p+n

which are analytic in the unit disk U {z: Izl < I}, where N {1,2,3 }.

A function f(z) belonging to A is said to be in the class S () if and only if
p,n p,n

Re
zf’(z) > (, ([.2)
f(z)

for some (0 < < p) and for all z D Also, function f(z) belonging to

A is said to be in the class K () if and only if
p,n p,n
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z f"(z)
Re +----;---c >

t z)
(1.3)

for some a (0 < e < p), and for al[ z e 0

We note that S (,) and K (e) are the subclasses of p-valeqt starlike
p,n p,n

functions and p--va]ent convx fuuct[ons of ordec respectively. Furthermore, we

note tlat S (a) c S (0), K (a) c K (0) for 0 a > p, and that
p ,n p ,n p ,n p ,n

f(z) e K () if and only i[ zf’(z)/p g S () for 0 a < p.
p,n p,n

In view of the reqults by a ill, we know that f(z) e S (x) [ and oaly if
p ,n. (k ) ak p ,

k=p+n

and that f(z) c K (a) if and only if
p,n

L k(k- a) ak p- .
k=p+n

Let A(p,n,Bk) denote the subclass of A consisting of functions which satisfy
p,n

th following |nequa[ity

\i Bkak (Bk> 0). (1.4)
k=p+n

It follows from (1.4) that

A(p,,n,Bk) A(p,n,Ck) (,3 < Ck Bk).

Therefore we can classify the analytic functions belonging to A according to the
p,n

above inequality (1.4). ,
REMARK 1. A(l,l,(k-e)/(1-=))= T () (Silverman [2]), ,

A(l,l,k(k-)/(l-e)) C(e) (Silverman [2]), A(l,l,k(l+8)/28(l-e)) P (e,8),
(Gupta and Jain [3]), A(I,I {(k-l)+B(k+l-2a)}/28(l-a)) S (e,B) (Gupta and Jain [4]),,
A(l,l,k{k-l)+B(k+l-2a)}/2B(l-e)) C (e,8) (Gupta and Jain [4]),

A(I,I,I/(I-)) R(a) (Sarangi and Uralegaddi [5]), A(l,l,k/(l-a)) Q(a) (Sarangi and

Uralegaddi [5]), A(l,l,(k+m-l)!(2k+m-l)/(k-l)!(m+l)!) K
m

(Owa [6]),
A(l,l,(m-k+k)r(m+e+k)/(k-l)!r(m++2)) R(m+) (Owa [7]),

A(l,l,(k-B)C(a,k)/(l-B)) R[a,3] (Silverman and Silvla [8]),

A(I,I,k(I+Y)C(a,k)/2Y(I-8)) Pe[8,] (Owa and Ahuja [9]), and

A(l,l,(m+a+2k-l)F(m++k)/(k-l)!F(m+2+a)) K(m+a) (Owa [I0]),
k

where C(a,k) (j-2a)/(k-l)!.
j=2

REMARK 2. A(l,n,(k-cO/(l-e)) (n) (Chatterjea [II]),

A(l,n k(k-)/(l-e)) C (n) (Chatterjea [II]) and A(I n,k/(l-e)) C(a n)

(Sekine and Owa [12]).

REMARK 3. A(p,l,(l+b)k/2b(l-a)p) (a,b) (Owa [13]),
p2 PA(p,l,(l+b)k2/2b(l-a) )--C (a,b) (Owa [13]),

,P
A(p,l,.(l-ap+bk)/(b-a)p)--T (a,b) (Goel and Sohi [14]),

(b_a)p2 P
A(p,l,k(l-ap+bk)/ C (a,b) (Goel and Sohi [14]),

P
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,
A(p,l,(k+m-l)!(2kn-p)/(k-p).’(m+p)’), Km+p_l (Owa [15]),

A(p,l,k(l+B)/(B-a)p) T (p,a,B)(Shukla and Dashrath [16]),

A(p,l,k2(l+B)/(-x)p2) C(p,.,B) (Owa and Srivastava [17]),

A(p,I,(k-a)/(p-)) T (p,) (Owa [I]), and A(p,l,k(k-)/p(p-a))

(,"A,a [1]).

2. DISTORTION THEOREMS.

We begin with the statement and the proof of the following result.

THEOREM I. Let the fnction f(z) defined by (i.I) be in the class A(p,n,Bk) with

Bk Bk+l Then

max 0 I.1 p p+n
Bp+n p+n

Izl p+n (2.1)

for z e U The equalities in (2.1) are attained for the function f(z) given by

(z) zp- F-1-- z
p+n

f
p+n

(2.2)

or

PROOF. Since f(z) A(p,n,Bk) and Bk B

ak . BkakBp+n
K= +n k=p+n

V ak
k;p+n p+n

k+l,
we have

(2.3)

(2.4)

Hence, it follows from (2.4) that

and

max O, I=1 - I=l p+n I ak}
k=p+n

max O, Izl p p+n

p+n

k=p+n

Bp+n

(2.5)

(2.6)

Furthermore, it is clear that the equalities in (2.1) are attained the function f(z)

given by (2.2).

REMARK 4. Note that if B > I, thenp+n

max {0, I,I - I’lP+n:}-- I1- +ni,i1_._
p*n (z CU).

From [I], f(z) is p-valent starlike in U if and only if Bp+n) (p+n)/p.

Therefore, we have

Izl"- Izl I (z>l, Izl’ +--u Izlp+nBp+n Bp+n
for p-valent starlike functions of the form (I.I).
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THEOREM 2. Let the funceion f(z) defined by (I. I) be ia tIe cl ass

A(p,n,kBk) with Bk 8K+ Then

max {0, p]zl p-I +n-I p+n-IIzl ’ I’<-)I pI’-I p-+
p+a p+n

for z U. The equalities in (2.7) are attained for the function f(z) given by

f(z) zp zP+n(p+n)B (2.8)
p+n

PROOF. Note that, for f(z) A(p,n,kBk) and Bka Bk+

+nkak kBkak’ 1, (2.9)8p+n k=Lp k=p+n

tha is, that

kak
k=p+n Bp+n (2. lO)

lis ,gives that

k=p+n

’ max 0, plI p-I p+n-I

and p+n

k--’p+n

p+n

Further, the equaItttes tn (2.7) are attained for the function f() given by (2.8).

REMARK 5. If Bp+n) I/p, then

p+n p+n

for z Thus, from [17], we know that, for p-valent starlike functions of the form
(I.I), Theorem 2 gives

Plzlp-IIB Izl p+n-I
p+n

Next, we derive the following lemma.

LEMMA I. Let

p+n

n (k- + i) Aiki=l i=l

for 2.. Then we have

i-. J
Ai(P + n) n (p + n- + i).

i=l i=2

PROOF. In case of j=2, it is clear from (2.13) that

(2.13)

(2.14)
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2
;[ (k- + i) k(k + I)= k2+ k, (2.15)

or, that AI= and A2= I. Thus we have

2

i At(P + n) i-l= + (p + a) p + n +
i=l

(2,16)

which proves (2.14) for j=2.

Assume that (2.14) holds true for j=j. Then

where

Hence we obtain

j+l
H (k + i) (k + j) H (k + i)

i=l i=l

(k + j) Aiki) I Biki
i=l i=l

BI= jAI, Bj+I= Aj, Bi= Ai_l+ jA
i

(i 2,3 j).

(2.17)

i=l Bi(P + n)i-l= JA1+i!2(Ai-l+ jAi) (P+n) i-I+ EJ(P+n)J
i Ai(p+n) i-I+ (p+n) i Ai(p+n)

i-I

i=l i=l

(p + n + j) i Ai(P + n) i-I

i=I

(p + n + j) II (p + n + i)
1=2

j+l
l[ (p + n- + i).

i=2
(2.19)

Consequently, by the mathematical induction, we complete the proof of Lemma I.

Applying Lemma I, we prove

THEOREM 3. Let the function f(z) defined by (I. I) be in the class

A(p,n,kmBk) with Bk’ Bk+land 2 , m p. Then we have

II (p+n-l+i)

If(J)(z)J max {0, II (p+l-i))Iz] p-j- (i=2) izlp+n-J} (2.20)
i=l (p+n)m-IB

p+n

and
j

(p+n- l+i)

If(j)(z)l )( J (p+l_i))Izlp-j+ (i=2 ,)Iz p+n-j

i=l (p+n) m- IBp+n
for z e and 2 ( j ( m.

PROOF. Since f(z) e A(p,n, kmBk) and Bk 8k+l, we note that

(p + n)m-tBp+n k
t m

k Bkak
k=p+n

ak ) I ’k=p+n

(2.21)

(2.22)
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that is, that

k ak<
k=p+n (p + n) m-tB p+n

for 2 m. For f(z) defined by (I.I), we have

f(J) (z) n (p+l-[))z p-j- (k + -i))akzk-j
i=] k=p+n i=l

for 2 m p. Hence, by using Lemma and (2.23), we obtain

If(J)(z)l (p+1-i))IzlP-J+ lzl p+n-j jN (k-l+i))a
ki=l k=p+n i =I

(2.23)

(2.24)

i AiklR (p+l-i))IzlP-J+ Izl p+n-j )a
ki=l k=p+n i=l

It (p+l-i))IzlP-J+ Izl p+n-j Ai( kiakl
i=l i=1 k=p+n

i=l i=l (p+n)m-iB
p+n

-(
J i Ai(P+n)<p+,.--,>] IzlP-J+ _I-.I p+n-L
i=l (p+n) m- 1B i=tp+n

j
R (p+n-l+i)

l[ (p+l-i))IzlP-J+ I=2

i=l (p+n) m- IBp+n
which shows (2.21). Similarly,

t=1)

(2.25)

JIfCJ)(z)l max {o,( r[ <:t:,+t t:>) lzl p-...+ I,.I p:’’--+ X (n (k-l+i))ak}
i=l k=p+n i

J
(p+n-l+i)

m+,x {0,1 +; ,:,,+,.-:,.:,)I=I ’-::’ Izl p+’’-j

i=l (p+n) m-- 1Bp+n
which gives (2.20). Thus we have the theorem.

REMARK 6. If Bp+n)
j J
n (p+n-l+i))/(p+n)m-I n (p+l-i), then

i=2 i=l
J

(p+n- l+i)

=ax {o,( I,.1+’-+- i=2 Izl p+n-.-i}
i=1 (p+n) m-

Bp+n

j
n (p+n-l+i)

1I (p+l-i)) Izl p-j- i=2 p+n-j

i=l (p+n)m-lB lZl
p+n

(2.26)

THEOREM 4. Let the function f(z) defined by (1.1) be in the class

A(p,n, kmBk with Bk+land p+l m p+n. Then we have
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H (p+n- [+i)

(p+n)m- IBp+n
for z g U and p+l m.

PROOF. Note that

i kta
k

k=p+n (p+n) m- tBp+n
for p+l m. Since

f(J)(z)
j
|I (k+l-[)akz

k=p+n i

k-j

for p+l m, by using Lemma and (2.28), we have

(k-l+i))a
k

k;p+n i--1

tI (p+n- l+ i)

< i=2 Iz IP+n-J(p+n)m-IB
p+n

which completes the proof of Theorem 4.

(2.27)

(2.28)

(2.29)

(2.30)

3. FRACTIONAL CALCULUS.

Many essentially equivalent definitions of the fractional calculus, that is, the

fractional derivatives and the fractional integrals, have been in the literature (cf.,

[18], [19], [20], and [21]). We find it to be convenient to recall here the following

definitions which were used recently by Owa ([221, [23]).

DEFINITION I. The fractional Integral or order % is defined by

z
()- d (3 I)D

-X
f(z) f )I-z r(),) o (z-

where % > O, f(z) is an analytic function in a simply connected region of the z-plane
-I

containing the origin and the multiplicity of (z- ) is removed by requiring

log(z -) to be real when (z- ) & O.

DEFINITION 2. The fractional derivative of order is defined by

z
DXf(z) d f(-) d (3 "))
z r(-x) z o (z-)

f

where 0 < I, f(z) is an analytic function in a simply connected region of the z-

plane containing the origin and the multiplicity of (z ) is removed by requiring

log(z -) to be real when (z- ) > 0.

DEFINITION 3. Under the hypotheses of Definition 2, the fractional derivative of

order (n + ) is defined by

n+ d
n

DD f(z) f(z),
z

dz
n z

(3.3)
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ahere 0 4 < and n - ,N N U {0}.
0

With the above definitions of the fractional calculus, we prove

THEOREM 5. Let the f,mcion f(z) defined by (I. I) be i the class

A(p,n,Bk) with Bk Bk+ I. Then

r(p+l)_Izx r (_+n+)II):Xf(z)l max {0, $-+Xf I -F+n+--F-p$f)B Izln)} (.4)
p+n

and

F(_+_ I)
p+ F (+n+1) F(_+I+X)ID-f(z) (I + Iz[ n)z F(p+I+X) F(p+n+l+X) F(p+l)Bp+n

for 4 > 0 and z g U. le equalities in (3.4) and (3.5) are attained for the function

f(z) given by (2.2).

PROOF. We define the function F(z) by

r_.+x) -4
F(z) r(p+F)-- z Dz f(z)

r(k+1) r!p.+l+),) kzP- r(---k+l-+X---- r(p+l---- akz
k=p+n

for X > 0. Then the function (k) defined by

(3.6)

r(k+ r.(_p+l +4)@(k) r(k+l+,) r(p+l)
(k p+n) (3.7)

is decreasing in k. Hence we have

F(p+n+ I) r(p+l+4)0 < (k) (p+n) r(p/d41$X)-r(p/i (3.8)

Therefore, it follows from (2.4) and (].8) that

IF(z)1 max {0 Izl p- ,(p+n) l.l p+n Y- a
k=p+n k

r(p+n+l) r(p+l+X)
max {0, Izl p-

rCp----+n+l+X) FOp+l) B Izl p+n
p+n

which implies (].4), and

(3.9)

IF(z) IzlP+ ,(p+n) Izt p+n a
k

k;p+n

z p+ __r(p_n+ r.(p+ +X)
z

p+n
F(p+n+l+;k) r(p+l) Bp+n

(3.1o)

which gives (3.5).
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Furthermore, since the equalities in (3.9) and (3.10) are attained the function

f(z) defined by

-k F_!p(+1) z
p+x

[’(p+n+l)
D f(z) {1 zn}
z r(p+l+),) F(p+n+l+),) r(p+l) Bp+n

(3.11)

we can show that the equalities in (3.4) and (3.5) ace attained for the function f(z)

given by (2.2).

REMARK 7. If B {F(p+n+l) F(p+I+X))/[F(p+n+I+X) F(p+l)) for A > O,p+n
then

Next, we derive

THEOREM 6. Let the function f(z) defined by (I.I) be in the class

A(p,n, kBk) with Bk Bk+ I. Then we have

r(p+1)_[zlP-X r (p+n) r(p+1-x)IDXf(z)l max {0 (pi (I
z F(p+n+l-X) F(p+l) Bp+n

and
r(p+l) [z[p-)" r(p+n) t’(p+l-),) [z[n}[DXf(Z)lz r(ik) (I + r(---n+l-X) r(p+l) Bp+n

[z[n)} (3.12)

(3.13)

for 0 X < and z The equalities in (3.12) and (3.13) are attained for the

function f(z) given by (2.8).

PROOF. Define the function G(z) by

G(z) z f(z)r(p+l) z

r(k+l) r (p+l-x) k
r(k+l-),) r(p+l) akz

for 0 h < I. Setting

(3.14)

r(k) r (p+l-.)
,(k) r(k+l-X) r(p+l)

(k p + n), (3.15)

we can see that (k) is a decreasing function of k, that is, that

r (p+n) r(p+l-x)o > (k) (p+n) r(p+n+l-X) r(p+l) (3.16)

Consequently, it follows from (2.10) and (3.16) that

max {0,
k=p+n

max {0, {ziP r(p+n) r(p+l-X)
r(p+n+l-X) r(p+l) Bp+n

(3.17)
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which proves (3.12), and

IG(z) IzlP+ (p+n) Izl p+n ka
k

k=p+n

F(p+n+l-k) F(p+l) Bp+n
(3.)

which shows (3.13).

Finally, we note that the equalities in (3.17) and (3.18) are attained for the

function f(z) def[ned by

D)’f(z) -r-ip-+l)zP-)" {I (_p_+_n_r__(_.[+l-),) zn}.
z I’(p+l-k) l(p+n+l-),) l(p+l) Bp+n

(3.19)

This implies that the equalities in (3.12) and (3.13) are attained for the function

f(z) given by (2.8).

REMARK 8. If Bp+n) {F(p+n) F(p+l-l)}/{F(p+n+l-k) F(p+l)} for 0 < I, then

max {0 F(P/I)-[zLX r(p+n) r(p+l-) n
F(p+I-A) (I F(p+n+l-;) r(p+l) Bp+n

F(p+n) F(p+l-A)
z n}.F(p4[ii) r(p+n+l-),) F(p+l) Bp+n

THEOREM 7. Let the function f(z) defined by 1. I) be in the class

A(p,n, kmBk) with Bk Bk+land p+l m p+n. Then
j+l

i2 p+n- +i F(p+n-j
p+n-j

(p+n) r(p+n+l-j-%) Sp+n

for 0 < < I, p+l < j m, and z U0, where

U (p+l < p+n-l)

U
0

U- {0} (j p+n).

PROOF. No e hat

Dkf(j)(z . J r(k+l-J)
z

II (k+ i f(-k+ILj-- akzk-j
k=p+n i=1

(3.21)

for p+l m and 0 < < I. Denoting

r(k-j)O(k) r(k+l-j-).) (k) p+n),

we know that O(k) is a decreasing function of k, so that

r (p+n,j)0 < O(k) < O(p+n) #(p+n-l-j--)" (3.22)

Consequently, with the aid of Lemma and (2.28), we have

r (p+n-j) p+n-j -,
k=p+n i

Ok+l-1) )a
k
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F__p_+_n._) p+n-j

j+l
I! p+n- l--i

_[(_+__)__ --2
F(p+n+l-j-) (p+n)m-IB

p+n

which shows the iqequality (3.20).

4. SOME PROPERTIES OF THE CLASS A(p,n,Bk).

j+l A.

i=l (p+n)m-ig
p+n

z
p+n-j-k (3.2 3)

We shall give some properties of the class A(p,n,Bk) conslting of functions of

the form (I.I) satisfying the inequality (1.4).

THEOREM 8. A(p ,n, Bk) is convex se.

PROOF. We need only to prove that the function h(z) defined by

h(z) fl(z) + (I 6)f2(z) (0 I) (4.1)

is in the class A(p,n,Bk) for functions f.(z)j (j=l,2) belonging to A(p,n, Bk). Let

f.(z) z
p

ak,jz (a
k,jk=p+n

O;j 1,2) (4.2)

be in the class A(p,n, Bk). Then we have

h(z) z
p . {ak,l+ (I )ak,2

k=p+n

z
p

Ckzk,
k;p+n

}zk

where Ck= ao,l+ (I )a
k

From this, it is easy to see that,2

BkCk=k Bk{ak I+ (1 )a
k 2

k=p+n +n

Bkak + (I 6) . Bkak,2
k=p+n k=p+n

+ (1 8)

(4.4)

which implies that h(z) A(p,n, Bk).
THEOREM 9. Let

fl(z) z
p

(4.5)

and
k

fk(z) zel z (k p+n). (4.6)

Then f(z) is in the class A(p,n,Bk) if and only if it can be expressed in the form

f(z) Ifi(z) + kfk(z), (4.7)
k=p+n
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) 0 (k p+n), and E 6k= 6 I.where i7 0, 6
k

k=P+n

PROOF. We assume that tile function f(z) can be expressed in tle form (4.7).

Sinc e
k k

f(z) (61+ 6k)zP-
’K +n k=p+n

Z
6k k

k p+n

z
p . dkZ

k=p+n
(4.8)

we observe that

Bkdk 6
k 61, I,

k=p+n k= +n
(4.9)

that i,s, that f(z) A(p,n, Bk).
Conversely, assne that the function f(z) defined by (I.I) is in the class

A(p,n,Bk). Then, [t follows that

ak’ Bk
(k p+n). (4.10)

Therefore, we may put

and
6k= Bkak

61= 6
k.

k=p+n

(k p+n)

Thus we prove that

f(z) z
p . akz

k=p+n

6k k61fl(z) + . z
k=p+n Bk

61f1(z + 6kfk(z)
k--p+n

(4.11)

This completes the assertion of Theorem 9.

By virtue of Theorem 8 and Theorem 9, we have

COROLLARY I. The extreme points of

A(p,n,Bk) are fl(Z) and fk(z) (k p+n) defined in Theorem 9.

Next, we prove

THEOREM I0. Let f.(z)j (j=l,2) defined by (4.2) be in the class A(p,n,B,_,jm
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Then the function h(z) defined by

’ a zh(z) z
p

L ak, ,2
k=p+n

is in the class E(p,n, Bk,3), wheme Bk,3 Bk,lBk, 2.
PROOF. We need to prove that

k=p+n

for Bk,3 Bk,IBk,2" Since

k=p+n
(j 1,2),

by using the Cuchy-Schwarz inequality, we have

Hence, if
k=p+n k,l k,2 ,lak,2

(4.12)

(4.13)

(4.14)

(4.1)

or
Bk’3ak lak’2 Bk,l Bk,2 ak,l ak,2

Sk IBk_2
,lak,2 Bk,3

(k p+n),

then the inequality (4.13) is satisfied. Since

(k p+n), (4.16)

(4.17)

by means of (4.15), we can show that if

(k p+n) (4.18)

BklBk=__,______m2==_ (k p+n), (4.19)
Bk,3

that is, if Bk,3 Bk,iBk,2(k p+n) then (4.13) is satisfied. Thus we have Theorem

I0.

Finally, we derive

THEOREM 11. Let fj(z) (J=| ,2,... ,m) defined by (4.2) be in the class

A(p,n,Bk). Then the function

k
m

2 iz (4.20)h(z) z
p I (I ak,j

k=p+n

is in the class A(p,n, Ck)., where C
k B/m.

PROOF. It is sufficient to show that

m
2Ck( ak,jk:p+n j

(4.21)
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?
for Ck B/m. Note that, for fj(z) g A(p,knB (j=l,2. ,...,m),

2

k=p+n k=p+n

It follows from (4.22) that

m
k=p+n j=l

Consequently, we have

k=p+n

2 2 2I B
k ak,ak,j m

k=p+n =I

for Ck Bk2/m wh[ch completes the proof of Theorem II.
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