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ABSTRACT. New classification of analytic functions with negative coefficients is
given by using the coefficients inequality, that is, new subclass A(p,n,Bk) of
analytic functions with negative coefficient is defined. The object of the present
paper is to prove various distortion theorems for functions in A(p,n,Bk) , and for
fractional calculus of functions belonging to A(p,n,Bk). Further, some properties of

the class A(p,n,Bk) are shown.
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I. INTRODUCTION.
Let Ap n denote the class of functions of the form

b

-]
£(z) =P ] a2t (3> 0 peNnem (L1
k=p+n
which are analytic in the unit disk U = {z: lz. < 1}, where N = {1,2,3,..0.}.
A function £(z) belonging to Ap n is said to be in the class Sp n(d) if and only if
’ ’

z£f'(z)

Re =)

> a (1.2)
for some @ (0 < a< p), and for all z €U . Also, function f(z) belonging to
A is said to be in the class Kp n(a) if and only if

’

’
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re {1+ 258y 5, (1.3)
for some a (0 € a < p), and for all z e U .
We note that Sp,n(u) and Kp (a) are the subclasses of p-valeat starlike
functions and p-valaent convx functions of order « , respectively. Furthermore, we
note thatr Sp (a) ¢ S0 0), X (a) c K (0) for 0 € a > p, and that

,n
f(z) € Kp (@) if and only if zf'(z)/p 9 \m) for 0 < a< p.

p,n

™ 9

In view of the results by Owa [l], we know that f(z) € Sn n(a) if and oaly if

©
) (k- a)ac<p-a,
k=p+n

and that f(z) € Kp n((!) if and only if

o
i k(k = a) a, < p- a.
P

k=p+n

Let A(p,n,Bk) denote the subclass of Ap n consisting of functions which satisfy

’

the following inequality

l B <1 (8,> 0). (1.4)
K=pin %k K

It follows from (1.4) that
A(p,n,Bk) < A(p,n,Ck) (0 < C, < Bk).

Therefore we can classify the analytic functions belonging to Ap,n according to the
above inequality (1l.4).

REMARK 1. A(1,1,(k-0)/(1-a)) = T (a) (Silverman [2]),
A(1,1,k(k=a)/(1-a)) = C(a) (Silverman [2]), A(1,1,k(1+8)/28(1-)) = P’ (a,B)
(Gupta and Jain [3]), A(1,1 {(k-1)+B(k+1-2a)}/2B(1-a)) = S*(a,B) (Gupta and Jain [4]),
ACL,1,k{k-1)+B(k+1-2a)}/28(1-a)) = C (a,8) (GCupta and Jain [4]),
A(1,1,1/(1-a)) = R(a) (Sarangi and Uralegaddi [5]), A(1,1,k/(1-a)) = Q(a) (Sarangi and
Uralegaddi [51), A(L,1,(ktm-1)1(2ktm-1)/(k-1)1(mt1)1) = K. (Oua [6]),
A(L,1, (mtak+k)T (m+a+k) / (k=1) I T(mta+2)) = R(mta) (Owa [7]),
A(1,1,(k-B)C(a,k)/(1-B)) = R[a,B] (Silverman and Silvia [8]),
A(1,1,k(1+Y)C(a,k)/2v(1-B)) = P_[8,Y] (Owa and Ahuja [9]), and
A(l,1,(m+a+2k-lﬁr(m+a+k)/(k—l)!P(m+2+a)) = K(m+a) (Owa [10]),
where C(a,k) = I (j-2a)/(k-1)!.

=2

REMARK 2. A(l,n,(k-a)/(l-a)) = u(n) (Chatterjea [11]),
A(l,n,k(k=a)/(l-a)) = Ca(“) (Chatterjea [11]), and A(l,n,k/(1-a)) = C(a,n)
(Sekine and Owa [12]).

REMARK 3. A(p,1,(1+b)k/2b(l-a)p) = (a b) (owa [13]),
AP, 1, (14b)K%/2b(1-a)p2) = C,(a,b) (oua D,
A(p,l,(1-ap+bk)/ (b~ a)p) ' (a b) (Goel and Sohi [14]),
A(p,1, k(l‘ap+bk)/(b-a)p ) = C (a b) (Goel and Sohi [14]),
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A(p,1, Gt ) L2k bep)/ (ko) b p) ) = K;p_l (owa {15]),
A(p,1,k{(1+8)/(B=a)p) = T (p,®,B)(Shukla and Nashrath [16]),
A(p,l,k2(1+8)/(ﬂ—u)p2) = C(p,a,B) (Owa and Srivastava [17]),
Alp,1,(k=0)/(p=a)) = T (p,a) (Owa [11), and A(p,1,k(k-u)/p(p-a)) = C(p,a)

(owa [1]).

2. DISTORTION THEOREMS.

We begin with the statement and the proof of the following result.
THEOREM 1. Let the faction f(z) defined by (l.1) be in the class A(p,n,Bk) with

< .
Bk Bk+l Then

max { 0,|z'p— Er}*w— |z|p+n} < 'f(z)' < 'z|P+ El~— |z|P+n .1)
ptn p+n

for z € U, The equalities in (2.1) are attained for the function f(z) given by

£(z) = zP- L PLAL (2.2)
B
p+n
. i <
PROOF. Since f(z) ¢ A(p,n,Bk) and Bk Bk+l, we have
. -3
B 2 < z Ba <1, (2.3)
+1
ptn K=p+n k=p+n k k
or .
Y oas - (2.4)
k=p+n p+n

Hence, it follows from (2.4) that
@
£(z)| » max { 0, |z|P- |z pn Y a}
k
k=p+n

> max { 0, |z|P- 51— [2|P"™) (2.5)
ptn
and

o
£(z2)| < |z|P+ |2|P*™ ¥
ol < el P T,

< 'z'p+ Bl |z|p+n . (2.6)
p+n

Furthermore, it is clear that the equalities in (2.1) are attained the function f(z)
given by (2.2).

REMARK 4. Note that if B > 1, then
ptn

max {0, lzlp- i—l— lz'p+n} = |z|p— 3 1 |z|p+n (z eU).
ptn ptn

From [1], f(z) is p-valent starlike in U if and only if Bp+n> (p+n)/p.

Therefore, we have

|2|P- 55— 2|77 |e@)| < 2P 5 2|7
ptn ptn

for p-valent starlike functions of the form (l.1).
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THEOREM 2. Let the function f(z) defined by (l.1) be 1in the class
< .
A(p,n,kBk) with Bk BK+l Then
- +n- , -1 1 +n-1
max {0, p'zlp L Ei-m-lzlp n 1} < lf'\z)l < p|z'p + 3 'z'p n (2.7)
pta ptn

for z e U. The equalities in (2.7) are attained for the function f(z) given by

1 p+n
£(z) = 2P~ ey (2.8)
(p+n)BP+n
PROOF. ©Note that, for f(z) € A(p,n,kBk) and B < Beel »
o @
v S
L ka € )} kBa<1, (2.9)
ptn k=p+n ak k=p+n k'k
that is, that m
) ka, < BI . (2.10)
k=p+n p+n

This ;gives that o
tf'(z)l > max {0, plz'p-l— 'zlp+n—1 ) kak}

k=p+n
> max {0, p|z|p-l~ i;—-- 'z‘p+n—l} (2.11)
and p:n
£ @] < pf2]Phe 277 | ke
k=p+n
< ple|Phe A 2Pt (2.12)

ptn
Further, the equalities in (2.7) are attained for the function f(z) given by (2.8).

REMARK 5. If Bp+n> 1/p, then

max/{O, p'zlp_l— Bl 'zlp+n_1} = p'zlp‘l— El—— ,zlp+n-l
ptn p+n

for z € . Thus, from [17], we know that, for p-valent starlike functions of the form

(1.1), Theorem 2 gives

plz|P7l- A 2P e )] < p)e| Pl Bl |27t
p+n p+n

Next, we derive the following lemma.

LEMMA 1. Let

i
T (k-1+1) = % At (2.13)
i=1 i=1

for j » 2. . Then we have

h) -
1 Ai(p +n)” =N (p+n-1+i). (2.14)

i=1 i=2

PROOF. In case of j=2, it is clear from (2.13) that
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2
I (k=-1+1i) =k(k+ 1) = k2+ k,
i=1

or, that A1= 1 and A2= l. Thus we have

TN

1 Ai(P + n)i_l= 1+ (p+n) =p+n+1
i=1

which proves (2.14) for j=2.

Assume that (2.14) holds true for j=j. Then

j+l ]
D(k-1+14) =(k+3) T (k~1+1i)
i=1 i=1
j+l .
= (k+§) ( % axh = Vet
i i
i=1 i=1
where
B = A, Bj+1= AJ,, Bo= AL F AL (L= 2,3,0000,9).
Hence we obtain
i+l - h| -
)' B.(p + n)i 1 jAl+ )' (Ai-l+ in) (p+n)i 1+ A (p+n)j
i=1 ' i=2 ]
i - B -
=i ) Ai(;h‘rl)i L) Ai(p+n)i !
i=1 i=1
= (p+n+3j) i’Ai(p+ mil
i=1
J
=(p+n+j) N(p+n-1+1)
i=2
i+l
=l (p+n-1+1i).
i=2

Consequently, by the mathematical induction, we complete the proof of Lemma 1.

Applying Lemma 1, we prove
THEOREM 3. let the function f(z) defined by (l.1) be 1in
m
< < < p.
A(p,n,k Bk) with Bk Bk+land 2 < m < p. Then we have

3
I (p+n-1+1)

k|
'f(j)(z)l > max {0, ( I (p+1-1)) lzlp_j— ( i=2 — ) Izlp+n~j}
i=1 (p+n) B
ptn
and P
3 I (p+n-1+1)
,f(j)(z)' > ( it (p+1-i))'z|p-j+ (tg_;-_l_—.—),z, ptn-j
i=1 ) Bp+n

for z e and 2 < j < m

PROOF. Since f(z) e A(p,n,kmBk) and B < 8

el Ve note that

- @
U kfa > ) «™Ba <1,

(o + " "8 P
k=p+n k=p+n

pin

59

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

the class

(2.20)

(2.21)

(2.22)
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that is, that

ok ak< ————~—l~-———
k=p+n (p + ™ p+n
for 2 < t € m. For f(z) defined by (l.1), we have
. J
£ = (0

(pr1-1))zP73- “1 (k + 1 -1))a, 27
i< k=p+a i=l

for 2 < j < m< p. Hence, by using Lemma ! and (2.23), we obtain

. j ; ° J
€| < (1 pr1-0)) |2|PI+ 2P Y (T - 1+1) Ja,
i=1 k=p+n i=1

(p+l 0)]z|P+ [P ] ( i A,ki)ak

k=p+n i=1 ©

]
p—k
Il =

C

II =

) fe P o7 DT )

A
(p+1-1)) Jz|P 7+ |2|P*d i (___i_-_____]
i=1 (p+n)

n
e

=L
A

Bpta

(pr1-1)) |2|* —l—l" " h (et

o e
H (p+n—l+i)

(

[N
L=
—

(1 prien) z|P73+ 4

e
i=1 (p+n)“”3

ptn
which shows (2.21). Similarly,

. j -
€9 )| > max (0,( T pr1-n)) [2|P= [P ] T (1) )a J
i=1 k=p+n i=1
j
I (p+n-1+1i)

(p+1-1))|2| P - ::in)—ﬁ;——— |2|P*7d)

= max {0,

[
i =e.
—

ptn
which gives (2.20). Thus we have the theorem.

j oy
REMARK 6. If B > (11 (p+n-1+1))/(p+n)™ T (p+l1-i), then
AL ) i=1

J
I (p+n-1+1)

max {0, ( ﬂ (p+l 1)) ' 'P 3 E:g__-.—-————lzlp+n—j}
(p+m)™ 5 p+n
j I (p+n-1+i)
= (1 (p+1-1)) |z |pj ——-——————|z|"+“'j .
i=1 (p+m)™ p a
THEOREM 4. Let the function f(z) defined by (l.1) be in

A(p,n,kka) with Bk < Bk+land ptl < m < p+n. Then we have

the

(2.23)

(2.24)

(2.25)

(2.26)

class
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J
T (p+n-1+1)
. i i
e L @.2n
(p+n)m_]B
p+n
for z ¢ U and p+l € j € m.

PROOF. Note that

k a, € —-—-=—m— _ (2.28)
k

o
\
)
L

=p

for p+l € t € m. Since

. *° j -
ey = -y (1 (k+l—£)akzk i (2.29)
k=p+n i=1

for p+l € j € m, by using Lenma 1 and (2.28), we have

£ )| < |z] P 7 ( T (k-1+1) )a,
k=p+n i=1

fI (p+n-1+1)
P S |z|p+n-j

—— , (2.30)
(p+n)™ B,

+n

which completes the proof of Theorem 4.

3. FRACTIONAL CALCULUS.

Many essentially equivalent definitions of the fractionmal calculus, that is, the
fractional derivatives and the fractional integrals, have been in the literature (cf.,
[18]), [19], [20), and [21]). We find it to be convenient to recall here the following
definitions which were used recently by Owa ([22}, [23]).

DEFINITION 1. The fractional integral or order A 1is defined by

=Y 1 z £(2)
D "f(2) ==+ J ‘-4z, (3.1)
z T o eyl

where A > 0, f(z) is an analytic function in a simply connected region of the z-plane
containing the origin and the multiplicity of (z - ;)A_l is removed by requiring

log(z - %) to be real when (z - g) & O.

DEFINITION 2. The fractional derivative of order X is defined by

4
ez = —— 4y —£E_ g, (3.2)
r(1-1) 0 (z-%)

where 0 < XA <1, f(z) is an analytic function in a simply connected region of the z-
plane containing the origin and the multiplicity of (z - ;)_A is removed by requiring
log(z - %) to be real when (z - ¢) > O.

DEFINITION 3. Under the hypotheses of Definition 2, the fractional derivative of
order (n + A) is defined by

n+A 4t
Dz f(z) = ——H-sz(z), (3.3)

dz
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shere 0 < A <1 and n € ?%= N U {0},

With the above definitions of the fractional calculus, we pruve

THEOREM 5. Let the funcion f(z) defined by (l.1) be {in the class
A(p,n,Bk) with Bk‘ Bk+1' Then
+A
- L(p+1) [2|P7" ¢ [(p+ntl) T(p+l+A) n
> B a SRR LLME LAY .
v, e@ ] > max (0, sEaS— U romaio HCE L |=]™ ) 3.4
and
lD—).f( S rip+1) |2|P™ (O [(p+n+l) C(p+l+r) Bl (3.5)
z V2 T(p+1+Ax) F(pfn+14X) T(p+1)B z .

p+n

for X > 0 and z € U. The equalities in (3.4) and (3.5) are attained for the function
f(z) given by (2.2).

PROOF. We define the function F(z) by

F(2) =-11:-%§}11-;')-) z-)‘Dz—)‘f(z)

_ F(k+1) [(p+l+Ar) k
=z T = (3.6)

ooy K a2
k=p+n (k+1+x) T(p+l) “k
for A > 0. Then the function ¢(k) defined by

_ P(k+1) T(p+l+r)
(k) = T?EIT?&S"%?BITT (k > p+ n) (3.7)

is decreasing in k. Hence we have

_ [(p+tntl) T(p+l+A)

0 <ot < olptn) = T FTeny F(ptl) ° (3.8

Therefore, it follows from (2.4) and (3.8) that

|F(2)| > max {0, |z|P- ¢(p+n)|z|P™" k=g+nak}

C(p+nt+l) T(p+1+d) |Z|P+n} (3.9)

> max {0, Iz'p—
T'(p+n+1+A) T(p+1) Bp+n

which implies (3.4), and

[F@)| < [P+ oG 2| ]

k=p+n

P T'(p+n+l) T(p+1+d) ptn
< 'z| + F(p+n+l+r) T(p+1) BP+n lz| (3.10)

which gives (3.5).
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Furthermore, since the equalities in (3.9) and (3.10) are attained the function

£(z) defined by

+
r(p+1) P

[ (p+n+l) T(p+1+)r) n
T(peiray ~ U - 2},

T(p+n+1+X) T(p+l) Bp

0 (2 = (3.11)
z

+n
we can show that the equalities in (3.4) and (3.5) are attained for the function f(z)
given by (2.2).

REMARK 7. If Bp+n> {T(p+n+1) T(p+1¥A)}/{I(p+n+1+r) T(p+1)} for A > O,

then

A
rp+1) |z|P* ___T(p+ntl) T(p+l+)) n
max {0, T(p+1+i) (1 F(p+n+1+x) T(p+1) Bp+n|2| )}

+A
I(p+1)|z|P
F(p+1+A5

['(p+ntl) T(p+1+A)

{1 -
F(p+n+1+d) [(p+1) Bp+

= Iz'n} .
n

Next, we derive

THEOREM 6. Let the function f(z) defined by (l1.1) be in the class
A(p,n,kBk) with B < B . Then we have

K Pkl
-2
A P(p+1) |2|P" [(ptn) [(p+l-A) a
[0,£C2)| > max (0, Fhiiy— (1 - Tlpwn+l-}) T(prD) B [z]" ) G.12)

and

-\
A T(p+1)]z|P T'(p+n) T(p+1-1) n
|sz(2)| S TT(ptIox 1+ Tp+a¥[-X) T(p+1) B [2]™ (3.13)

+n

for 0 <€ A< 1and z€ . The equalities in (3.12) and (3.13) are attained for the
function f(z) given by (2.8).

PROOF. Define the function G(z) by

G(z) = Eifil:ll ZADif(z)

f(p+D)
- P - ; T(e+l) T(p+l-A)  k (3.14)
k=p+n T(k+1-1) T(p+l) k

for 0 < A < 1. Setting

_ [(k) T(p+l-2) .
(k) T(kt1-%) T(p+D) (k > p+n), (3.15)
we can see that Y(k) is a decreasing function of k, that is, that

0> ¥(K) < ¥(ptm) = BB (3.16)

Consequently, it follows from (2.10) and (3.16) that

letz)| > max {0, |z|P- w(p+n) |2|P*™ | ka )
k=p+n

P_ T(p+n) T(p+1-2) p+n
> max 00, [2|P - 7SS Torn 5orn |27 (3.17)
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which proves (3.12), and

|502] < [lPs bpr 2P T e,
K=p+n
[(p+n) T(p+1-2) +
< ‘ ‘p ‘+n:1n)‘) lf()p+l) B Izlp "

(3.18)

which shows (3.13).

Finally, we note that the equalities in (3.17) and (3.18) are attained for the
function f(z) defined by

-A
A = -I£E+1)Zp _ T(p+n) T(p+1-}) n
P82 = sy U T Frmb oy T 6 ¢ 0 (3.19)

ptn

This implies that the equalities in (3.12) and (3.13) are attained for the function
f(z) given by (2.8).

REMARK 8. If Bp+n> {T(p+n) T(p+1-A)}/{T(p+n+l-X) F(p+1)} for O < A < 1, then

-A
C(p+D)|z|P T(p+n) T(p+l-A) n
max {0, r(gﬁlxg_ (1 T T(p+n+1-N)T(p+D) B in K

_feen|eP

F(p+n) I(p+1-A) 'z‘n}.

r(p+1-X) T'(p+n+1-1) T'(p+l) Bp+n
THEOREM 7. Let the function f(z) defined by (l1.1) be 1in the class
m < <
A(p,n,k Bk) with Bk Bk+1and p+1 < m < p+n. Then
( I (p+n—l+i) ] T'(p+n-j) il
e (o] < L — [z|PHo-i= (3.20)
(p+n) F(p+n+l-j-1) Bp+n
for 0<A K1, pt1 € j < m, and z € UO’ where
U (p+l1 € j < p+n-1)
U0 =
u- {0} (j = p+n).
PROOF. Note that
X () S 3 T (k+1-1) k=j-A
- - - LCktl-g) =3-
D, (2) o1 (k+1-1) ) TG I=1=0) 2K? (3.21)

k=p+n i=1

for p+l € j < mand 0 < XA < 1. Denoting

T(k-1)

0(k) = Faa1-1-%)

(k > p+n),
we know that O(k) is a decreasing function of k, so that

' (p+n-j)
0 < 8(k) < 8(p+n) = ?(—pﬁféﬁ)' (3.22)

Consequently, with the aid of Lemma 1l and (2.28), we have

(3 Tpm=j) |, fptn=j-A
‘D £ < T(p+n+l-j-A) |2 k=§+n(i"1 (k+1-1) )a
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B DL S S G SR
T(p+n+1-1-X) 1 (prmy™ i
j+1 2+
I (p+n-1—i)
JCrriey bl LI LA (329
(p+n) B

pt+n
which shows the inequality (3.20).
4. SOMZ PROPERTIES OF THE CLASS A(p,n,Bk).
We shall give some properties of the class A(p,n,Bk) consisting of functions of
the form (1.1) satisfying the inequality (l.4).

THEOREM 8. A(p,n,Bk) is convex set.

PROOF. We need only to prove that the function h(z) defined by
h(z) = éfl(z) + (1 - G)fz(z) (M <8< 1) (4.1)

is in the class A(p,n,Bk) for functions fj(z) (3=1,2) belonging to A(p,n,Bk). Let

£ =zP - ) k > 0;5 = .
J,(z) z k=%+n ak’jz (ak,j Hij 1,2) (4.2)

be in the class A(p,n,Bk). Then we have

o
o k
hz) = 2P -~ ) {8a, .+ (1 - &)a, .}z
K=p+n k,1 k,2
=2 - 7 ¢ zk, (4.3)

k=p+n k

=6 + - .
where S ak,l (1 5)ak’2 From this, it is easy to see that

[ Bo=1 Bk{‘sak,l+ 1 - 8a ,}

k=p+n k=p+n
-] oo
=8 § Ba +(1-68) ] Ba
Kepin K1 keptn < K2
<8+ (1 -9)
=1 (4.4)
which implies that h(z) ¢ A(p,n,Bk).
THEOREM 9. Let
£,(2) = 2P (4.5)
and
p 1 k
fk(z) =z-g—z (k > p+tn). (4.6)

k

Then f(z) is in the class A(p,n,Bk) if and only if it can be expressed in the form

£(2) = §,f (2) + ) 8, £,.(2), (4.7)
k=p+n
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©

>0 (k > ptn), and L 5k= 1 - 6‘.

where 51> 0, ¢
k=p+n

k

PROOF. We assune thatr the function f(z) can be expressed in the form (4.7).

Since © © S
B2 = 8+ [ 80P - ] <K
K=p+n k=p+n k
© §
=P - ) EE_ S
k=p+n 'k
L]
=P -7 gL, (4.8)
k=p+n

we observe that

©

) B d, = ) § =1-8<1, (4.9)

k=p+n k=p+n
that is, that f(z) ¢ A(p,n,Bk).

Conversely, assume that the function f(z) defined by (l.1) is in the class
A(p,n,Bk). Then, it follows that

&< Eli— (k > ptn). (4.10)

Therefore, we may put
= >
Sk Bkak (k p+n)
and
Thus we prove that

£(z) = 2P - ) akzk

k=p+n
-
s
= Glfl(z) + ) Bk zk
k=p+n 'k
= 51fl(z) + l kak(z) . (4.11)
k=p+n

This completes the assertion of Theorem 9.
By virtue of Theorem 8 and Theorem 9, we have

COROLLARY 1. The extreme points of
A(p,n,Bk) are fl(z) and fk(z) (k > p+n) defined in Theorem 9.

Next, we prove

THEOREM 10. Let fj(z) (j=1,2) defined by (4.2) be in the class A(p,n,ak j).
i
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Then the function h(z) defined by

@
h(z) = zP - ¥ A 1% zzk (4.12)
’ »

A

L
=p+n
is in the class A(p,n,Bk,:;

PROOF. We nced to prove that

P < .
), where Bk,3 Bk 1 Bk 2

¥ <1 (4.13)
k=p+nak,3ak,la'k,2

for B _< B B

L B . <1 G =1,2), (4.14)
k=p+n k,Jak)j
by using the Cauchy-Schwarz inequality, we have

0
' < 1. 4.15
k=%>+n JB'k 18,2 J“k 1%,2 ( )
Hence, if ’ > ’ ’

(k > p+n), (4.16)

B, .a, a $ e
K37k, 17K,2 Jik,lak,Z Jak,lak,z

‘J B B
e < _Lﬁl__k_,_Z_ (k > pt+n), (4.17)

then the inequality (4.13) is satisfied. Since

or

1

T < —= (k > p+n) (4.18)
k,17k,2
( o1k, J B 18,2
by means of (4.15), we can show that if
B, B
——— ‘\j k’,l, kot (k > p+n), (4.19)
JBk,lBk,Z k.3

that is, if B _< B

> p+ 4, . A\
k,3 k,lBk,Z(k P n) ’ then ( 13) is satisfied Thus we have Theorem
10.

Finally, we derive

THEOREM 11. Let fj(z) (j=1,2,...,m) defined by (4.2) be 1in the class
A(p,n,Bk). Then the function
T T2k
hz) =zP - § ( } a, j)z (4.20)
k=p+n j=1 7’
2
is in the class A(p,n,Ck)., where Ck < Bk/m.

PROOF. 1t is sufficient to show that

m
N 2
Lol I a )<t (4.21)
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2
Ck< Bi/m. Note that, for Fj(z) € A(p,n,Bk) (j=1,2,.4¢.,m),

@ oo 2

22 (
) < B o<1 (G o=1,2..0,m). 4.22)
k=p+n Bkak’J k=p+n ks

It follows from (4.22) rhat

oo

1 . 2 m
-— )} B ( ] a ) < 1. (4.23)
m k

k=p+n j=

Consequently, we have

for

8.

9.

10.

11.
12.

13.

14.

15.
16.

17.

18.

©

; no 1 v 2, % 2
L Ck( ) ay . ) < — ) B () a ) <1 (4.24)
k=p+a j= » k=p+n =

Ck< Bi/m which completes the proof of Theorem 1l.
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