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ABSTRACT. Let f: X~>Y be a continuous semigroup homomorphism. Conditions are
given which will ensure that the semigroup XvY .is a topological semigroup, when the

modified Whyburn topology is placed on XvY.
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1. INTRODUCTION.
Let (X,ml) and (Y,mz)
phism. An associative multiplication m may be defined on the disjoint union of X

be semigroups and let f: X+*Y be a semigroup homomor-

and Y as follows: m is m, on X, m, on Y and mz(f(x),y) if x € X and
y € Y. If we assume that X and Y are Hausdorff semigroups and that f 1is
continuous, then m is continuous in the disjoint union (or direct sum) topology.
Let (X u Y,m) denote this Hausdorff semigroup.

Let Z denote the disjoint union of X and Y with Whyburn's unified topology
[1]; i.e., V is open in Z iff Vn X and VnY are open in X and Y,
respectively, and for any compact K in V n Y, f-l(K) -V 1is compact. If X |is
locally compact, then Z is Hausdorff, and if Y 1is also locally compact, so is Z.
If f is a compact map, then Z and X U Y are the same. If X and Y are locally
compact, Hausdorff semigroups, (Z,m) 1is a locally compact Hausdorff semigroup
provided m; is a compact map [2].

In this paper we consider the modified Whyburn topology which is coarser than the
disjoint union topology, but finer than the Whyburn topology and ask what conditions
will insure that m will be continuous.

2. MAIN RESULTS. .

Let W denote the disjoint union of X and Y with the modified Whyburn
topology; V is open in W iff VN X and VN Y are open in X and Y,
respectively, and f-l(y) - V 1is compact for every y in V N Y. The following
notions and facts are due to Stallings [3]. A subset A of X is fiber compact
relative to f: X>Y 4iff A is closed in X and AN £ !
y € Y, and X is locally fiber compact iff every point in X has a neighborhood with

(x) 1is compact for every

a fiber compact closure. Fiber compact subsets of X are closed in W and W is

Hausdorff if X 1is locally fiber compact. If Y 1is first countable, then Z and W
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are the same iff f 1is closed.
The proof given in [2] that m is a continuous operation on Z did not use the
assumption that ml-l(K) is compact for every compact K in X, but used an
equivalent condition instead. The appropriate genmeralization of that condition for
W is:
CONDITION 1. For every fiber compact K1

in X such that for all x, y € X, if ml(x,y) € Kl’ then x € K2 and y € KZ'

This condition is equivalent to: pi(ml'l(K)), i =1,2, are fiber compact for each

in X, there is a fiber compact K2

fiber compact K in X, where Py and p, are the projections on X X X.

THEOREM 1. If X 1is locally fiber compact, Y 1is regular and m satisfies
Condition 1, then m is continuous and hence W 1is a Hausdorff semigroup.

PROOF. The argument is similar to the one given for Z. We will show continuity
at a point (x,y) where x € X and y € Y. Let v = mn(x,y) = mz(f(x),y). Let V
be an open set in W containing w. Since Y 1is regular, there is a Y-open set U

containing y such that UcYnV. Since m is continuous, there are Y-open

2
neighborhoods U1 and U2 of t(x) and vy, respectively, such that
mz(U1 xU2) c Uc V. Then Vi = f-l(Ui) u Ui’ i = 1,2, are W-open neighborhoods of x

and y, respectively. Since f-l(ﬁ) - V 1is fiber compact, Condition 1 guarantees the
existence of a fiber compact K in X such that if ml(x,y) are in f_l(ﬁ) -V,
then x and y are in K. Since K is fiber compact, K 1is closed in W and so
K x K 1is closed in W X W. Hence V, 6 X V2 - K X K 1is an open set containing (x,y)

1
and a calculation shows that m maps V1 x V2 - Kx K into V.
Let X = (0,1] x [0,1], Y = [0,1] and f: X > Y by f(x,y) =y. If X and
Y have the usual multiplications, then Z is [0,1] x [0,1] with the usual

multiplication. However, the multiplication is not continuous on W since

{(%,1)} + 1 and {(1,1-%)} + (1,1) in W but {(;11-,1--!1;)} does not converge
since it is a fiber compact set in X and hence closed in W.

If the multiplication on X 1is changed to be the usual multiplication in the
first factor and the zero multiplication in the second and if Y 1is given the zero
multiplication, then the conditions of Theorem 1 are satisfied. Since f 1s not a
closed map, W 1is not the same as Z. Hence W 1s a Hausdorff semigroup topologi-
cally different from [0,1] x [0,1].

These examples illustrate how difficult it is to have m continuous on W. In
fact, we have:

THEOREM 2. Suppose X 1is connected and for each y in Y, f_l(y) is not
compact. If (W,m) 1is a first countable, Hausdorff semigroup, then Y has the zero
multiplication.

PROOF. Let t,y € Y and let z = mz(t,y). Let A= {xc¢ le(x,y) = z}. Since
f_l(t) c A, A# ¢. Also A 1is closed in X since m(A,y) = z implies that
m(K,y) = z. Since f-l(y) is not compact, y is a limit point of f—l(y) in W

1

and so there is a sequence {yi} in £~ (y) converging to y in W. Let x € A

and {Vi} be a countable neighborhood basis at x. If we assume that no Vi is

contained in A, we can find a sequence {xi} which converges to x such that
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-1
m(xiy) # z. Hence ml(xi,yi) is not in f "(z) for all i, but {ml(xi,yi)}
converges to z. Thus the set B = {ml(xi,yi)} is closed in X. For any w € Y,
f—l(w) N B 1is finite because otherwise B will have a convergent subsequence in the
compact set {w} U f-l(w). This means that B 1is fiber compact and W - B 1is a

neighborhood of 2z which contradicts the fact that {ml(x )} converges to z.

174
Thus A 1s open and must equal X since X 1is connected. All of this yields
m2(Y,y) =z, Let t',y' € Y and let z' = mz(t',y'). The argument above will give

that mz(t',Y) =2z'. Hence z =2z' and Y has the zero multiplication.
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