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ABSTRACT. This paper is concerned with a simplified dynamical analysis of orthotropic
viscoelastic plates that are made up of an arbitrary number of layers each of which is
a Maxwell type solid. This study includes the case where some or all the layers are
themselves constituted by thinly laminated materials with couple stresses. The
recurrence equations for the shear stresses are obtained for an arbitrary number of
layers and then applied to plates with two or three layers. The viscoelastic damping
effect is determined by the process of linearization and then illustrated by a plate
composed of one, two or three layers. It is found that the damping increases with

anisotropy and wave number. These results are shown by graphical representations.
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1. INTRODUCTION.

Based upon the general theory of multilayered continua in finite anisotropic
elasticity due to Biot [1-4], Pal Roy [5,6] has studied the problems of elastic wave
propagation in a thinly layered laminated medium with stress couples under initial
stresses. In these studies the composite structures are assumed to be made up of
multilayered elastic materials and hence some modifications are required for
applications to real solids. It is almost impossible to study statics or dynamics of
real solids without suitable approximations and/or assumptions. However, the Maxwell
solid is generally believed to be one of the best practical examples of real solids.
It is assumed that the Maxwell solid consists of a series of spring with a viscous
element known as 'dash pot' (see Biswas [7]), and the main factor which makes this

model different from the elastic one is the relaxation time. From a practical point
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of view, the study of statics or dynamics of Maxwell solids seems to be important in

its own merit and has physical applications.

In this paper, we study a simplified dynamical analysis of orthotropic
viscoelastic plates that are made up of an arbitrary number of layers each of which is
a Maxwell type solid. This problem includes the case where some or all the layers are
themselves made of thinly laminated materials with couple stresses. The recurrence
equations for the shear stresses are derived for an arbitrary number of layers and
then applied to plates with two or three layers. The effect of the viscoelastic
damping is examined with examples. The damping is found to increase with anisotropy

and wave number. Results are shown by graphical representations.

2. BASIC EQUATIONS AND ASSUMPTIONS

We consider a plane strain deformation of a plate of Maxwell solids of thickness
h. The x-axis is chosen midway between the boundaries of the two faces and the y-axis
is normal to them.

The stress-strain relations for the Maxwell solid with the effects of relaxation

time, T are given by [7]:

d d oxx
a %xx T 2"3:- &x "~ 1 2.1
d d vy
at Xy = 2“3 exy T @.2)
d d vy
a %y T LT yy "1 @.3
where the strain components e“ are
du v 3v . du
ey = ? eyy = 3y ° exy i + 3y (2.4abc)
The corresponding dynamical equillibrium equations are
0 30 32
X, X .p “2 (2.5)
dy dy at
30 30 32
+ —-zz = p ——Z (2 ‘6)
9x dy ot

where oij are stress components, W is the modulus of rigidity, P 1is the density,
u and v are displacement components. The coefficients involved in equations (2.1)
- (2.6) are functions of y as the plate may be inhomogeneous with continuously or
discontinuously stratified.

We assume that the displacment fields are harmonic function of time t and

sinusoidally distributed along the x-direction so that
iwt
u = U(y) sin mx e 2.7

v = V cos mx eiwt (2.8)
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where w is the frequency, V is assumed to be a constant and equal to its average
value across the thickness h.
From the equation (2.2) we obtain
o = M sin mx A(y) eimt (2.9)
xy
where M and A(y) are
1.7t dy
M= u(l - Ta ) and A(y) ='E; -mV (2.10ab)
It follows from (2.1) and (2.7) that

O g = 2Mm U(y) cos mx o1t (2.11)

Eliminating Uxx and U from (2.11) and (2.5), we obtain

d (1 dA 2 3
E;'( N & ) - 20° ACy) = 20” V (2.12)
2
where N = N(y) = % (l - pm2 ) (2.13)

2Mm

The solution for the shearing stress A(y) is determined from equation (2.12) with
the boundary conditions Al and A2 for A(y) at the top, y = h/2 and the bottom, y =
-h/2 of the plate. This solution still contains the unknown constant deflection V
which is determined by integrating the equilibrium equation (2.6) with respect to y

so that
h/2
S=-Mn [ A(y) dy - mz Ve, (2.14)
-h/2
where the total mass per unit area of the plate face is given by
h/2
b= | ey oy, (2.15)
and -h/2
iwt
[Oyyll - loyylz = S cos mx e (2.16)

represents the total normal load applied to the same unit area. When this normal load
is known, the deflection V is obtained from (2.14), and hence the shear stress
distribution A(y). Thus oxy is known from (2.9). Once we know oxy the value of
U(y) is determined by combining (2.5) to obtain

1 d
U(y) = 7 Iy A(y) (2.17)
Nm y
Also we obtain oxx from equation (2.11) in the form

M d iwt
%x = N dy A(y) cos mx (2.18)
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3. EXTENSION TO MULTILAYERED PLATES AND VISCOELASTICITY.

The above results can easily be extended to a multilayered plate constituted by a
superposition of thin adherent homogeneous layers each of which is a Maxwell type
solide Within each layer N 1is supposed to be a constant. Considering first a
single layer of thickness h with A, and A, as the shear stresses at the top and

1 2
bottom of the layer, it turns out from differential equation (2.12) that

A= Cl cosh Bmy + C2 sinh Bmy - mV (3.1)
1
— mz 0
where B=/2N=(l~£—2) , (3.2)
2Mm
C, = k(A +A) +av] —— (3.3)
1= (A A cosh BY .
C, =7 (A - A) —rF5v (3.4)
2 =2 A4 &) Shan &y :
1 -1
Y = (mh/2), M = u(l - m) (3.5ab)

The displacement amplitude U is given by equation (2.17). 1Its values Ul and U2 at

the top and bottom of the layer are found to be

1
U, = — (A,a + b) + 2Ve (3.6)
1 V2N m A1 Az
1
U, = - —— (A,b + A ja) - 2Vc (3.7)
2 Y2N m g b2
with a = tanh BY + - b = tanh BY - —L c = 1 tanh BY (3.8abc)
tanh By ° tanh BY’ 8

We consider now a plate composed of n orthotropic homogeneous layers. The jth layer
(j = 1,2...n) of thickness hj is characterized by coefficients "j’ Tj and a mass
density p, with the corresponding parameters aj, bj’ cj, Mj, Nj' The displacement
amplitude and shear stress at the top and bottom of the jth layers are respectively

(U,, A,) and (U ).

i j+1° A:]+1

Now, at the interface between the layers j and (j+1) the displacement amplitude

Uj+l as it is found for the lower face of the jth layer and upper face of the (j+l)th

layer, must be the same. We obtain from equations (3.6) - (3.7)

Aj Dj + (Ej+ Ej“) Aj+1+ Aj+2 DJ+1- -2v(cj + cj+1) (3.9)
a b
where Ej = -—;J— , Dj -—_-L- (3.10ab)
Y2N m V2N m
Thus when the values of the shear stresses A, and A are given at the outer

1 n+l
boundaries, the recurrence equations (3.9) will lead to the evaulatuion of the (n-1)

shear stresses Aj(j=l,3...n) at the interfaces.

The normal load SJ acting on the jth layer is obtained from equations (2.14) and
(3.1) and has the form
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- 2 iy a2
SJ. Mjcj(Aj + Aj+l) +mV thj(l Yj) m pjv hj 3.11)

The total load S applied to the multi-layered plate is obtained by summing the loads
Sj applied to each layer. We obtain

n

: 2
= = -L - .12
S jil sj M, cj(Aj + Aj+l) +aVK-m o,V (3.12)
i
with pt = Ej pj hj, K = zj hj Mj(l -3 ) Yj= (m hj) /2 (3.13abe)

3

The equation (3.12) will provide the only unknown V of the system. When this
unknown V is known, the shear stresses A, at the interfaces are also completely

h]

known.

4., VISCOELASTIC MATERIALS.

We next consider the viscoelastic properties of the layers for possible
technological applications of the above analysis. It follows from (2.4a) and (2.7)
that the strain component is

iwt
ey =M U(y) cos mx e (4.1)
Hence we find from (2.11) that

g =Me (4.2)
XX XX

Also it follows from (2.4c) with (2.7) - (2.9) that
o =Me (4.3)

It is clear from equations (4.2) and (4.3) that for Maxwell type solid there is only
one coefficient M instead of two coefficients for the elastic materials.
Viscoelastic properties of the layers may be taken into account by substituting the
following general form of operator M for the coefficient M (see Biot [8]):

—L_M(r) dr + M" + M'p (4.4)

M= ptr

o

where . For harmonic oscillations p = iw and the operator also becomes a

d
P=qc
complex quantity.

5. THINLY LAYERED LAMINATED MATERIALS.

We now consider a multi-layered plate in which the layers are themselves composed
of thinly laminated materials of Maxwell solids. For a laminated medium composed of a
repeated sequence of n thin layers each of which occupies a fraction Gj(j=1,2...n)
of the total thickness h' of the laminated medium and characterized by the
coefficient Mj = uj/(l --G%—). The equivalent coefficient M i.e. the coefficient of

the equivalent anisotropic mgdium) is
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n
M=) M 5, (5.1)
j=1 4
This equivalent coefficient M constitute a first approximation. The next

approximation is provided by introducing stress couples [3] i.e. a moment per unit

area equal to

32v
R = b—z— (5.2)
)
X
y2 N
where b =011y oy 83 -M, (5.3)
3oy 3 "

The equilibrium equations (2.5) - (2.6) are now modified to the following form

3 ] 9°u
0 +7z—0 =p— 5.4
Ix xx | dy xy P 3:2 (5.4
2 4
9 9 v v
0 4+5—0 =p—+b—r 5.5
I3x xy & 9y yy 3(:2 Ix ( )

Consequently, equation (3.12) must be replaced by

h 2 2 3 4 9
s.-jzl (Ay + Ay ) eMy + 0V - ptv+mvjzl byhy (5.6)

where bj(j = 1,2...n) is the couple stress coefficient of the jth laminated medium.

The result (5.6) can immediately be extended to viscoelastic laminated media.

6. EVALUATION OF DAMPING.

An important task in the problem of design analysis is the determination of the
effect of viscoelastic layers on vibration absorption at resonance. We consider a
simply supported homogeneous anisotropic plate. The span p equal to half the wave
length is

P -f'; (6.1)

From equations (2.14) and (3.1) we have the expression for S which, after putting
Al = 0 and Az = 0, becomes

tanh BY 2
8y ) = m" p, V (6.2)

SﬂmthV(l- t

N~

—_— 2
where B =v2N = (1 -&2)
2Mm

For a viscoelastic material M is replaced by M + M where M is the purely
imaginary term. The imaginary part of the load S 1s represented by S and is
obtained from equation (6.2) by linearizing it with respect to M. We obtain

S=m Vh FM (6.3)
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3 tanhBY
2 By

+_;_ 12 + 12 (taghBY _ 1 >
cosh™ BY 28 Y cosh™B

with F=1 - ) (6.4)

Equation (6.3) determines the damping (longitudinal) on vibration attenuation.

The variation of F for different values of B (anisotropy) and Y are shown in
figure 1. 1t is seen that the damping increases with anisotropy and wave number. The
result (6.3) is also applicable to the laminated plate of the equivalent continuum as
described in section 5. In the case the inclusion of couple stress will contribute an
additional term m"Vh Ab where A4b is the imaginary part of equation (5.3).

From equation (2.10a) and (6.3) it follows that

S = p.F (6.5)
with 2
_m Vh ;w; (6.6)
1 +w'T

The variations of %with wT are shown in Figure 2 which confirms the symmetric
variation with respect to the relaxation time T. As a particular example, we
consider a plate composed of two layers. The material (obviously Maxwell type) of the
first layer of thickness h' is characterized by the coefficient M1 and that the
second layer of thickness h" is characterized by the coefficient Mz and suppose h =
h' + h".

The applied shear stresses at the outerfaces are put equal to zero (i.e.
A =A,=0. The shear stress A2 at the interface is found by equating the interfacial

173

displacement amplitude U2 considered as belonging to the first and second layer.

Applying equations (3.3) we obtain

1

U, = - — ( a,) - 2Ve (6.7)
1 |/2N1 m AZ 1 2
1
U, = — ( ) + 2V e (6.8)
2 /v, = ) 1

where Nland N2 are the values of N for M = MI and M = M2 respectively. The total
load q (= q + qz) is given by

2(M,c.,+ M. c,) (c,+ c.) 2
q 1% %) Moyt ,
Ve = : 3 5 ) + m(h'M+h"M,)-2(M ¢ #Myc,) = 2 (p b +p, ) 6.9)
+ —
YN /N,

This equation determines the deflection V when the normal load applied to the
structure is given.
We next consider a plate composed of three layers. The first and third layers

are identical in nature and are characterized by the coefficient M, while the middle

1
one is characterized by the coefficient Hz.Because of the symmetry, the interfacial
shears are Az = A3 while A1 = AA = 0 at the outerfaces. If we equate the

interfacial displacements U2 considered as belonging to layers 1 and 2. We obtain
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2(c1 + cz)mV
A = - — £ (6.10)
2 a 282c2

where 82 is given by a, + b2 = 282c2.

The total load q= q + 1, in this case is given by

2(c,+ c,)(2M, ¢, + M, ¢ 2
et i 92 om o
Vo 2 282“2 + m(Zthl + hZMz) 2(2M1c1+M2c2) - (Zplh + p,h )

vfzn1 lznz

The second and third terms represent the normal load corresponding to superposed

layers with perfect interfacial slip while the first term represents the effect of
adherence between layers.

10

‘80 /‘7‘:::
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Fig. 1 Variation of F with y for different values of
B (equation 6.3).
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Fig. 3 A three-layered symmetric plates composed of a core of
thickness h, sandwiched between two identical layers of

thickness hl'

7. CONCLUDING REMARKS.

The foregoing results of a simply supported plate with a loading distributed as a
half sine wave are obviously valid for an arbitrary loading provided it can be
expanded in a series along the span. 1In this case, the results are applied to the
various Fourier components with a suitable value of m corresponding to each wave
length. The procedures used for the simply supported case can easily be extended to
the case where the plate is built-in (i.e. when both end points of the plate are
rigidly attached so that the displacement of its faces are both zero. In this case,
in order to satisfy the boundary conditions we must, instead of sinusoidal solutionms,
consider exponential solutions. Such solutions are empirically derived from the
trigonometric solutions (2.7) and (2.8) if we replace m by ik.
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