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IrRODUCTIOI.

The integral equation

(p,q) pq f f exp(-px-qy)f(x,y) dy dx, Re(p,q) > 0 (1.1)
O0

represents the classical Laplace transform of two variables and the functions

(p,q) and f(x,y) related by (1.1), are said to be operationally related to each

other. (p,q) is called the image and f(x,y) the original.

Symbolically we can write

(p,q) f(x,y) or f(x,y) (p,q), (1.2)

and the symbol is called "operational".

Meijer’s G-function [5] is defined by a Mellin-Barnes type integral

m n

au II r(bj -s) II F( 1-aj +s)

L/ --t j=1Gm’n(z -i u vu,v
b
v F( l-bj +s r(aj -s

j =m+ j =n+

S
z ds (1.3)

where m, n, u, v are integers with v ) I; 0 < n < u; 0 4 m < v, the parameters

a.3 and b.3 are such that no poles of r(bj-s); j 1,2 ,m coincides with any

pole of F(1-ak+s) k 1,2 n. Thus (ak-bj) is not a positive integer. The

path L goes from -i to +i so that all poles of integrand must be simple and

those of F(bj-s); j 1,2,...,m lie on one side of the contour L and those of

F(1-ak+s) k 1,2,...,n must lie on the other side. The integrand converges if

u+v (2(re+n) and larg z < (m + n - u - v). For sake of brevity au denotes

al,a 2, ,au.
In the present paper, we propose to establish a couple of formulae for
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calculating Laplace transform pairs of two dimensious that involve Meijer’s G-

function.

2. TIlE MAIN RESULTS.

(u+v) > 0 larg =I < ,(i) m + n --(ii) 0 n u, 0 m v, v I,

(iii) Re(bj+E) > 0, j 1,2 .....m
(iv) Re(ak + E

o )2 < 0, k 1,2,...,n,

(v) ak-bk is not a positive integer, j 1,2,...,m, k 1,2,...,n,

(vi) r represents the non-negative integer, 0,1,2,3,..., then

r o-E-1 m,n+l 1-E’ au’
x (xy) Uu+2,v (’

b
V

and

p-r(pq)E-o+l Gm+l,n+l
u+l,v+l (a Pq

E-o+ I-E a
u o+r-E-r-I () _re,n+

x Gu+2’v (’
b
V

r--I (p)-o+l _m+l,n+2. P Gu+3,v+ (-p
o-E+r-, l-E, a o-E+rU

(2.1)

(2.2)

valid under the conditions:

(a) Re( + E o- r + bj) > -l, j 1,2 .....m,
(b) Re( + E o- r + ak) < k 1,2 n,

(c) along with (i), (ii), (v) and (vi).

From (2.1) and (2.2), we propose to prove the following relations.

r o-1 bv a ,o+r -)x (xy) E(bl au
r

p (Pq) 1-o E(o,bl b
v

a a
u a Pq), (2.3)

where Re(o) > 0, v > u+l and r is a positive integer.

l-o-r-I x
x () E(E+bl ..... E+bv E+al E+au’ o+r

pq E[l+i-r, l+E+i-o-r+b l+E+-o-r+bv

2+6-o-r, l+[+-o-r+a l++6--r+au, 1+6 :p) (2.4)

valid under the same conditions as (2.3).

The function appearing in (2.3) and (2.4) is MacRobert’s E-function, whose
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properties are given in [6], pp. 433-434, and [8].

PROOF: The generalized Stieltjes transform of a G-function is given by (see [6],
p. 237)

a I-G, a8/-0 Gm+l’n+l (a8 Pf
x-I

Gm’n [X P )dx F--Yo) p+l,q+l0 (x+8) P’q
b o-, b
q q

(2.5)

l-rOn writing pq for B and multiplying both the sides of (2.5) by p q, we have

1-r a
P q

t -I Gm’n (at u )dt
0 (pq+t) u,v

b
V

(pq) G-o+l -r I-, ap Gm+l ,n+l u
r(o) u+1,v+1 (apq

-, b
V

(2.6)

Now interpreting with the help of the known result ([4], result (2.83), p.

137), it follows

o+r-
o r

ayo-I [2F(O) 0f t: 2 2 2 jo+r_l[2#t-Y)u n,v [at
u

)dt
b
V

._. (pq)-o+l Gm+l,n+l (aPq u

F( O)P
r u+l, v+

V

(2.7)

Evaluating the left-hand side integral of (2.7), we get

l-G, au, o+r-$
xr(xy) o--I _m,n+l a

u+2,v [y
b
V

p-r(pq)-o-I uu+l,n+l I- a

+l,v+l (aPq u

r-[, b
V

(2.8)

The following result will be used in the proof of (2.2).

If F(p,q) f(x,y), then

--6_

0
From (2.8) and (2.9), we have

J [2p%)F(,q)d (2.9)

8-r-o+ yO--I Gm,n+lx
u+2,v (’l

I-$, au, o+r-
b
V

+$-o-r l-G, a.q-+l :
2 :X"’Gm+l’n+l (aq% u

)d.’/2’’I f J( Cv^; u+l,v+l
p 0 o-6, b

V

(2.10)

On evaluating the right hand side integral and after some simplification, we

obtain the desired result (2.2).

In (2.1) and (2.2), reducing the Meljer’s G-functlon to MacRobert’s E-functlon

to obtain (2.3) and (2.4).
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3. PRTIGJI

On specializing the parameters, the G-functlon can be reduced to MacRobert’s E-

function, generalized hypergeometric function and other higher transcendental

functions. Therefore, the results (2.1) and (2.2) leads to many new operational

relations not listed in [4,9,2,3] and other literature.

3(a). lamed image functions expressed in ter of the G-function.

The following results are obtained by using the known results from [7] on pages

226-334.

1
G-o+b+ I)

-r
P (pq)2 exP(2) W1 (Pq)- (I-G-o-B), (o-/-b)

1-G,
=’" r(o) r(b+G) xr(xy) -G-I G2 [[I, (3.1)

Re(o) > O, Re(b+G) > 0.

-b)

-1/2 2-b x
r o--1 1,1cos(- ), (xy) G2 - (3.2)

-r E 2) Y1 (2)]P (Pq) [H1-2 -2

-2 2,1. cos 2(7- G)xr(xy)-G 62, 2

l-G, l+r-

__1 (b+F) + 3-r 2 4
P (Pq) [I

--b
2/-) L

-G-b

1-G-1 r 2 G 1,1
+ r-G, x (xy) G2 2 [-y

l-G, b

(3.3)

(3.4)

P-r(pq) G SI_2G,2b [2/) ..’" 2-2 [r(-b)r(E+b)]-I x
r (xy)-G

2,1 1-[, l+r-G
"G22 (1

b, -b
(3.5)

3

P (pq) H(1) (P)
2) (/pq) 2-5/2 x

rcos(c ) (xy)

(3.6)
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P (pq)2
m

Wk,mf2i/pq)WK, m[-2i/pq)

p-r (pq)

a

"__" (x)
/ F[1/2-K+m)F[-K-m)

a a a+- + K, +-- K, m + + r +3,1

a+l a a+l
2 m’ +’ -T

u v
2 2 [ei(v-u)/2 H(1) [,/---) H(2)

V u

(3.7)

i(u-v)/2
H(I) H

(2)
u V

(u+v+w)-2-5/2(cos u cos v)xr(xy)-
w w+ w+u+v

+r
2 2 23,1

W--U+V W+U--V W--U--V

2 2 2

The following four results are obtained from (2.1) by using Carlson’s results [I]:

1-r (1-2a,1-2c 2ig-) + 1-2a,1-2c -2ig-)]P a.i

22c-2a r-1 -1 a, a +-, r
x ), 2 2

r(l-2a) r(l+2c-2a) G313 (y
c, c+2 2

(3.9)

)p- p-r [/I-2a,I-2c;21/) [I-2a,I-2c;-21/)]

r
-i 2

2c-2a 2 2 a, a +- r +2,2
r-2) r+z-2) -%,3 (I

c, c+-f, 0
(3.,o)

P (Pq) [exp(21g + ic)r(-2c,21)

2 -1 r-1 -1
G2,1: n [r(l+2c)] x y
2,2 (-

+ exp(-2i/--ic)r(-2c,_21v,-q-)]
O, r

C, C +
(3.11)

where r(a,x) denotes incomplete gamma function.

-r
P [2,2-2c;2t/-)- (2,2._2c;_2t-)

2 2c
x
r 2 O, + r

-i, 2 [r(l+2c) ]- G2:2 (y
C, C +--

2

(3.12)

3,1 2,2In the last six relations, G3, 3 or G3, 3 provides an interpretation for the
symbol 3F2 as does for 2F0 So does G2’I I,I

2,2 or G2, 2 for 2FI.
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3(b). The G-functlon expressed as a naed original function.

The following results are obtained from (2.1) by using the known results [7] on

pages 228-234.

a
a

-K+

pO-2K- K-o- 24,1 [pq(Pq) G1,5
o-K+

a a+ a a+ a+

" +m,- +1, -m
J r( +K+m

2K- o+ o-K-. r(2m+l) x (xy) MK 2)W_K,m[2___),m
,/xy ,/xy

(3.13)

a
+K+I

2K+o- 1-o-K- a_
P (pq) 2 5,1

G1,5
a+l a+l a a+lo+K+

a

" "-- +m, -’---m, " +1,--

l-o-2K o-+K-’m F1/2-K/m F(-K-m) x (xy)

3 w
o-- 2-o-- 5,1 pqP (Pq) GI, 5

5/2
-i. 2(cos u- cos v) x

/xy /xy
(3.14)

W W+U+V W--U+V W+U--V W--U--V
o+ -I, 2 2 2 2

3 - (xY)-2 [ei(v-u)/2 H(1)v (I) H(2)u
,/xy Ixy

i.(u-v)/2 H(1) I__.L_) H
(2)

e u v
/xy ’xy

(3.15)

w+
3 w ---o’- 2 2 o 5,1

p (pq) GI, 5 w- w+u+v w-u+v w+u-v w-u-v
o+ -- 2 2 2 2

5 3
x. 2(cos u + cos v (xy) v /xy

u
,/xy

+ e u v
Ixy ,/xy

(3.16)

3

(pq)2-a- GI,53,2 [Pq
+a-b, b, c, 2a-c, 2a-b

3

2,/ x
2 (xy)_.

Ib+c+2a Kb-c xy
(3.17)
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3
0

(pq)2-o GI,55,1 [Pq
o-I a, b, -b, -a

35/2 -o
i 2

x (xy)-2 [e-ib4 sin a sin b H(1)[/) (2)
a-b

e
a+b a-b

3
2(pq)7-o GI,55’I [Pq

o- a, b, -b, -a

5

" 2 o o___3
"=" x

4 cos a cos b
(xy) e2 H(1) [/----a-b a+b

/xy

(3.8)

eib H(I)I H(2)[
a+b a-b )]Cxy ]xy

3 +a
2

pO+2a-I (pq)-a-o GI,55’I [Pq
o+a--x,z O, , b,-b

(3.19)

The following three results are obtained by using Carlson’s results [I] on page 239

in (2. I).

3
0o- 2-03,1

P (Pq) GI, 5
o-I, c, c+ d, d+-

3-r(l+2c) x

r(l+2c-2d) 22d+l
-2i)(xy)-c-2[eic IFI(I+2c; I+2c-2d;
?xy

-ic FI(I+2c; I+2c-2d;+ e
/xy

(3.21)

3
00- 2-051 [pq(Pq) Gll 5

o-I, c, c+ , d, d+

] 2
2d

r(l+2c)r(1+2d) x2 (xy)-c-2[e I+2c, I+2c-2d; )
/xy

-ic -2i
+ e [1+2c, I+2c-2d;

Cxy
(3.22)
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3

(Pq) GI, 5
o- c, c+ 7, d, d+ 7

3

i 2
-2d / F(t+2c)F(l+2d) x

2 (xy)

[eic ,(I+2c, I+2c-2d;
-icw -2i21) e OCI+2c, I+2c-2d;--)] (3.23)

xy /xy

3(c)’. Partlcular cases of (2.2).

The following results are obtained by using the known results from [7] on pages

228-230 in (2.2).

a a a
a -- -6+I, l-K/-{ K+-{ +I

2-0-+21)K-0--+I 4,2
P G3, 5

or-K+
a a+l a a+l. r(l+2m) x () M (2/ W_<,m ,m[2/ (3.24)

a
2-2<-0-6 I-O-K- - 5,2 q

a a a
I+-+ - I+K+ a-K+ -a a+l a+l a+l a
0++ - --- +m, ----m, 7+I

/- F(-+m)r( -m)x+-I y (3.25)

3 3 w

P 6)2 2

w l+w w

-’ -T-
,2G3,5 w w+u+v w--u-v w-u+v w+u-v

0+2 2’ 2 2 2 2

3

/7 [2 cos(u+v)] x y [Ju( )Jv + J-u(
x )J-v(/ )] (3.26)

+w w w+l

-’ ’ T2-0- ; 5,2

W+U+V W--U+V W+U-V W--U-VW
0+ -- -1,

2 2 2 -’-""--
5/2 6+ y(y-2 (x H(2)(/x2i(cos u cos vw) x Le

iW(v-u)/2
H
(I)
v u

i(u-v)/2 H(1) H(2),e
u v [/7 )l (3.27)

The following three results are obtained by using the known results from [I]

on page 239 in (2.2).
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5 -, 0,-a- 2-a 3,2 q
P !) G3, 5 (

o-1, c, c+- d, d+-
-1/21"(1+2c)
2d+1

1’(1+2c-2d) 2

c+S-
reich.x ya-C-2 F I+2c; I+2c-2d;-2i

+ e iFi[i+2c; I+2c-2d; (3.28)

-6 2-a 5,2
P q G3, 5 (p

o--1, c, c+ d, d+
2

2
-2d

/ 1’(1+2c)1’(1+2d) x
+c- - ya-C-2 [eiC (1+2c, 1+2c-2d; 2i x)

+ e (I+2c; I+2c-2d; -2i (3.29)

3 3 -6, 0
2

P G3,5
0-’’" c, c+’" d, d+’"

3.- a-c- c /-f=.. 22- 1’(1+2c)F(1+2d)xC+ y [e
i

,(I+2c, I+2c-2d; 2i/7)

e (I+2c, I+2c-2d;-2i/)] (3.30)
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