Internat. J. Math. & Math. Sci. 9
VOL. 11 NO. 1 (1988) 9-14

TWO PROPERTIES OF THE POWER SERIES RING

H. AL-EZEH

Department of Mathematics
University of Jordan
Amman, Jordan

(Received July 31, 1986 and in revised form October 29, 1986)

ABSTRACT. For a commutative ring with unity, A, it is proved that the power series ring
AIXID is a PF-ring if and only if for any two countable subsets S and T of A such that

S EianX(T), there exists c¢ € ann(T) such that bc = b for all b e S, Also it is proved
A

that a power series ring A[XIl is a PP-ring if and only if A is a PP-ring in which

every increasing chain of idempotents in A has a supremum which is an idempotent.
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1. INTRODUCTION.

Rings considered in this paper are all commutative with unity. Let AIXI be the
power series ring over the ring A. Recall that a ring A is called a PF-ring if every
principal ideal is a flat A-module. Also a ring A is called a PP-ring if every principal
ideal is a projective A-module.

It is proved in Al-Ezeh [1] that a ring A is a PF-ring if and only if the annihila-

tor of each element a € A, ann(a), is a pure ideal, that is for all b € ann(a) there
A A
exists ¢ € ann(a) such that bc = b. A ring A is a PP-ring if and only if for each a e A,
A
ann(a) is generated by an idempotent, see Evans [2]. 1In Brewer [3], semihereditary
A

power series rings over von Neumann regular rings are characterized. In this paper we
characterize PF- power series rings and PP- power series rings over arbitrary rings.
For any reduced ring A (i.e. a ring with no nonzero nilpotent elements), it was

proved in Brewer et al. [4] that

ann (a0 + alx + ...) = NIXD
AlxD

where N is the annihilator of the ideal generated by the coefficients ags 3y

2. MAIN RESULTS.
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LEMMA 1. Any PF-ring A is a reduced ring.
PROOF. Assume that there is a nonzero nilpotent element in A. Let n be the least
-1
positive integer greater than 1 such that a” = 0. So ae ann(an ). Because A is a PF-

- -1 A -1 -1, n-1
ring there exists b€ am&(an 1) such that ab = a. Thus a® 12 (ab)n = a" " =0

since ban-1 = 0.
Contradiction. So any PP-ring is a reduced ring.
THEOREM 2. The power series ring A[XI is a PF-ring if and only if for any two
countable sets S = {bo, bl’ b2, ves}l and T = {ao, ars ...} such that S € ann(T), there
- A
exists ¢ ¢ ann(T) such that bic = bi for i =0, 1, 2, ...

A
PROOF. First, we prove that A[LXI is a PF-ring.

Let g(X) b0 + bzx + ..., and

f(X) = a, +a,X+ ..., and let

0 1

g(X) € ann (f(X)). Then g(X) f(X) = 0.
AlxD

The ring A is inparticular a PF-ring because for all b ¢ ann(a), there exists
ce anR(a) such that bc = b. So by Lemma 1, A is a reduced ring. Thus
biaj = foralli=0,1, ...;5 j=0,1, 2, ....

So

{bo, bl’ S ang(ao, ar, ...). So by assumption, there exists

ce ann(ao, a, ...) such that bic = bi for all i = 0, 1,.... Hence g(X)c = g(X)

A
and ¢ ¢ anﬁI (f(X)). Consequently, the ring A[LXI is a PF-ring. Conversely, assume
AXxD
AIXID is a PF-ring.
Let {bo, LI .l e azn(ao, a, eee). Let g(X) = by + b X+ ..., and £(X) = ag +a+...
Then g(X) f(X) = 0. Therefore g(X) € ann (f(X)). Thus there exists h(X) = c.+c X+...
01
AllxD
in ann (£(X)) such that g(X) h(X) = g(X).

AIXD
Consequently, h(X) f(X) = 0 and g(X) (h(X) - 1) = 0. Since A is reduced,
Ciaj =0 foralli=0,1, ... , j=0,1, 2, ... and bi(CO_l) =0 for all i

and bic =0 for all j 2 1. Hence {co, Cps eee } ¢ anx(ao, ar, ...) and bi(co-l) = 0.

3

So ¢y € ann(ao, aj, ...) and bic0 = bi for all 1 = 0, 1, ... . Therefore the above

condition holds.

Because any PP-ring is a PF-ring, every PP-ring is a reduced ring. On a reduced
ring A, a partial order relation can be defined by a < b if ab = a2, The following
lemma is given in Brewer[3] and Brewer et al.[4].

LEMMA 3. The relation < defined above on a reduced ring A is a partial order.

PROOF. Clearly the relation < is reflexive. Now assume a < b and b < a. Then

ab = a2 and ba = b2. So, (a—b)2 = 32 - 2ab + b2 = 0. Because A is reduced a - b = 0,
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or a = b. To prove transitivity of <, assume a < b and b < c. So ab = a2 and bc = bz.

Consider

[

az(c2 - 2¢cb + b2)

az(c2 - b2)

(ac - ab)2

L}

ab(c - b)(c + b)
0

because b(c - b) = 0. Since A is reduced, ac - ab = 0 or ac = ab = az. Therefore a < b.

THEOREM 4. The power series ring A[LXI is a PP-ring if and only if A is a PP-ring
in which every increasing chain of idempotents of A with respect to < has a supremum
which is an idempotent element in A.

PROOF. Assume A[XI is a PP-ring. Let a € A. Since A[IXI is a PP-ring and

idempotents in ATXT are in A, ann (a) = eA[[ XI]. We claim anR(a) = eA. Because
A XD

ea = 0, rea = 0 for all r € A. Hence eA ¢ anx(a). Now let b ¢ ann(a). Hence
A
be ann (a). Thus b = eg(X) for some g(X) = b, + b.X +... . Consequently, b = eb,.
0 1 0
ALxD
That is b € eA. Whence A is a PP-ring.

To complete the proof of this direction, let eO:Se1 < ey .. be an increasing

chain of idempotents in A, Becauee A XD is a PP-ring and since idempotents of A [IXT

are in A, anmn (e, + e,X+ ...) = eAIXT. Now we claim 1 - e = supie,, e,, ...}.
NS o 1

2
Since ee, = 0, ei(l -e) = e; =e; i 0, 1, ... .
So e, <1-e foralli=0,1, ... . Let y be an upper bound of {eo, e ...}. So

e, <y fori=20,1, ... .

Hence 1 - y ¢ ann (e0 + e1X + ...0).
ALXT

Thus 1 -y = ec for some c ¢ A. Consequently,

y(l —e) = (1 -ce)(1l -e)

=1-ec~-e + ec

1 -e

So 1 - e <y. Thereforel —-e = sup{eo, e ceele

To prove the other way around, consider ann &f(X)) where f(X) = ay + aIX +oo.
AllX

Hence

ann (f(X)) = ann(a o) XT

’ a ’
AxT a0 1

amn(a,, a,, ...) ={)ann(a,)
2% 21 i i
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o
=N eiA, ei = e,
i=0
because A is a PP-ring.
Let d0= ey d1 = egeps cees dn = dn—len’ en

One can easily check that

Therefore
l-d,<1- d,<1~- 4d, ...

By assumption, this increasing chain of idempotents has a supremum which is an idempotent.

Let

Sup{l - dj, 1-d;, 1-dys ...} =d. So

(1 - di) d =1- di foralli=0,1, ... .

We claim that

diA = (1 - d)A.

[
]
LD

Now 1 - d > d So (1 - d)di =1 - d. Hence

i

(1 -d)AE:_diA for alli= 0, 1, ... .

L

Thus (1 - d)A € () d.A.

i=0 1
Let y ¢ /] diA‘ Then y = diyi’ i,0,1, ... .
i=0
Consequently
(1 - di)(l -y)=1+ diy - di -y
=1 - di
2 2
Because ydi = di = diyi = diyi =vy.
Therefore 1 -d;, <1 -y foralli=0,1, ... .

i
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Because d = Sup{l - dgs 1 - djs 1 - dy, R N
d Sl -y. Sod=4d(1l -y) =d-4dy
Hence dy = 0. Thus y(l - d) =y -yd =y
That is y € (1 - d)A. Therefore () d;A = (1 - d)A.
i=0
Consequently,
ann  (£(X)) = (1 - d) A[X]]
AlIX])
Therefore A[[X]] 1is a PP-ring.
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