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ABSTRACT. We study displacement of a uniform elastic beam subject to various
physically important boundary conditions. Using monotone methods, we discuss
stability and instability of solutions. We present computations, which suggest
efficiency of monotone methods for fourth order boundary value problems.
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1. INTRODUCTION

We study the displacement curve u = u(x) of a uniform elastic beam of length
2, supporting a distributed load of intensity q(x,u(x)). This load causes the
beam to bend from its equilibrium configuration along the x-axis. For small
displacements we have:

u""= Eiéfgl = f(x,u) , O0<x<ug, (1.1)
where E is Young's modulus, I is the moment of inertia, see e.g. [1]. That is
we study the equation (1.1) with appropriate two-point boundary conditions. We
show that the monotone iteration scheme and other monotone methods are appli-
cable and provide an effective computational tool, as well as means of proving
existence theorems.

Monotone methods are usually associated with maximum principles. Clearly,
there is no weak maximum principle for u"" = f(x), since condition f(x) » O does
not preclude u(x) from having extreme points inside of any interval. However,

if we add the boundary conditions

u(0) =a, u'(0) =8, ul(e) =y, -u'(e) =6 (1.2)

with a, B, v, § > 0, then condition f(x) > O does imply u(x) > O (since the
Green's function in (2.2) is positive). This is an example of inverse-
positivity, a property of boundary-value problems, rather than of equations, see
[2,3]. 1In [3] we applied monotone methods to general inverse-positive problems,
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including (1.1) - (1.2). In this paper, we present some further results, and
report on computations with numerous nonlinearities f(x,u). The main results of
this note are the theorem 3, and our discussion of stability leading to the
theorem 4. Theorems 1 and 2 are essentially known, and are illustrated here
computationally. For a previous application of monotone methods for this model,
see J. Schroder [4], where a rather involved splitting method was used. Most of
the results in this paper were stimulated by computations (and the fast con-
vergence that we encountered).

Our results apply to other physically important boundary conditions, see
Remark 2, as well as to biharmonic equations in higher dimensions, see [3].

Throughout the paper % will denote subsolution, ¢-supersolution,

|U|co = max Ju(x)].
0<x<2

2. GENERAL RESULTS
The following theorem was proved in [3].
Theorem 1. Consider the problem (one-dimensional)

u"" = f(x,u) , 0<x<2 (2.1)
u(o) = a, u'(o) =8, wul(e) =y, -u'(e) =

Assume the following for 0 < x < 2.

(i) There exists a supersolution ¢ ¢ C4, i.e., ¢"" > f(x,8), ¢(0) > «a,
$'(0) > 8, ¢(2) » v, -»'(2) > &, and a subsolution v(x) defined by reversing the
above inequalities. Moreover ¥ < ¢.

(ii) f is continuous, increasing in u for ¢ < u < ¢.

Then the problem (2.1) has a C4 solution u(x), and v < u < 4. Moreover,
starting with ¥ or ¢ we get two monotone sequences of Picard iterations.

Theorem 2. For the problem (2.1) starting with some continuous function
uo(x) define a sequence of approximations {u"(x)} by the formula

u(x)-u(]-%x2+qjx)+8x(1-2— "z) (2.2)

2 2
+ ¥%§ (32 - 2x) + &ff (2-x)

L
+Of G(x,8) flg,uy_4(£)) de,

where G(x,£) is the Green's function for u"" with the boundary conditions
u(0) = u'(0) = u(e) = u'(2) = 0, which is given by the formula (see [5])
6(x,6) = Lo x? (£-0)2 (306 - 2ex - 2x) for x < &, G(x,E) = G(,x). (2.3)
62
Assume the following for 0 < x < £,
(1) vy <uy , ug < ou,.
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(ii) f(x,u) is continuous, decreasing in u for Uy € u < uy, and there is a
constant f, > 0, such that [f(x,u) = Flx,v) | < folu-v] if

< < u,.
Ug € U, v <y

A
(ii1) fo 187 < 1.
Then the problem (2.1) has a solution u(x) € 4, lumu fee » 0 asn» e
(uniform convergence), and moreover

u, <

0 $Up SUp €L €U L < Uy <y (2.4)

Solution is unique in the order interval [uo,u]].
Proof. Relations (2.4) easily follow by induction. To prove convergence

write
2
Upep(X) - up(x) =0f G(x,g) [f(g,u (g)) - flg,uy_4(£))]de,
and hence
[3
max |u.,1(x) = u.(x)]| < fy max [ G(x,g) d& max Ju (x) - u _q(x)]
0<x<2 n+1 n 0 x 0 0<x<L n n-1

An elementary computation shows that

2 2
max [ G(x,E)dE = [ G(£/2,6) d& = =gz . (2.5)
x 0 0

To prove uniqueness it suffices to write the equation for the difference of
[}
two solutions w(x), multiply it by w and integrate [ by parts twice.
0

Assume now that f(x,0) = 0 anda =8 =y =8 = 0. Then (2.1) possesses a
trivial solution u = 0. Next, we discuss existence of a nontrivial solution.

Theorem 3. Lef f(x,u) be continuous function increasing in u for 0 < u < =,
0< x< 2, f(x,u) >0 for u> 0, and (uniformly in x).

. u _ fix,u) _
]1m+ ?-(—x—’—u-)- = 1lim T 0. (2.6)

u+0 u++w

Then the problem (2.1) has a positive solution, provided a«, 8, v, § > 0.

Proof. Let Yo (x) > 0 and Ag > 0 be the principle eigenfunction and eigen-
value for u"" = Au, u(0) = u'(0) = u(2) = u'(2) = 0, whose existence is
guaranteed by the Krein-Rutman theorem (see [3] for details). Let ¢0(x) and
= pu, u(-p) = u'(-p) = u(2+p) = u'(2+p) with p > 0.
Notice, ¢0(x) >0 for o < x < £. Now it is easy to check that ¢ = ewo(x) and
$ = M¢0(x) are sub and supersolutions, provided ¢,p are sufficiently small and M is
sufficiently large.

ug be the same for u

This theorem covers in particular the sublinear nonlinearities. For the
superlinear case, we state the following conjecture.
Conjecture. Assume the conditions of the theorem 3 with (2.6) changed to
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l:g+ fxu) N M=o (2.7)

Then the problem (2.1) has a positive solution.

We expect this solution to be unstable. We discuss the concept of stability
next.

For the equations of second order, like Au=f(x,u), it is known that if solu-
tion can be computed by the monotone iteration method, then it must be stable.
The proof of this result, as well as the definition of stability itself, makes
use of the maximum principle for parabolic equations, see e.g. [6]. Since we
do not know of any maximum principle for Up + Uyyyyr WE have to generalize the
concept of stability. We state it for a general inverse-positive operator L,
see e.g. [2,3); in our case Lu = u"" with the boundary conditions of (2.1).

Definition. Solution u(x) of Lu = f(x,u) with f continuous and increasing
in u, xeRM, is called stable if for any € > O there exist sub and super-
solutions ¥(x) and ¢(x) with 0 < |u - ¢|Co + Ju - wlco < e, such that ¢ < u < ¢.
(If this condition holds only with 4 = u (¥ = u) we say that solution is stable
from below (above)). Solution is called unstable if in the conditions above
¢ < u <Y,

It is easy to see that the concepts of stability and instability are
mutually exclusive for an isolated solution. (Our concept of stability
corresponds to the 'strong stability' in H. Matano [7], and it implies stability
for elliptic equations of second order, see Proposition 4.2 in [7].)

Theorem 4. The positive solution of

u"" = P , u(0) = u'(0) =u(z) =u'(2) =0, p>1 (2.8)

must be unstable if it exists, and hence not computable by monotone 1iterations.

Proof. If u is a solution, then v = eu satisfies v"" - vP = (e-eP)uP.
Hence v is a supersolution for ¢ < 1, and a subsolution for € > 1.

On the other hand, it is easy to see that the trivial solution of (2.8) is
stable from above (take ¢ = 0, ¢ = €¥p; if p is an odd integer take y = -eyg,
giving two-sided stability). Not surprisingly, it persists under small one-
sided perturbations.

Proposition 1. Consider the problem

u"" = uP + e fx,u) , u(0) =a, u'(0) =8, u(2) =y, u'(e) =3s. (2.9)

Here f is continuous, increasing in u; f(x,u), a, 8, v, & » 0; f(x,0) # O.

Then for €, a, B, vy, 6 sufficiently small, the problem (2.9) has a non-
negative solution.

Proof. With ¢0 as defined in the theorem 3, choose t > 0 so small that
Tugvo > prop for 0 < x < & (with p > 0 chosen so small that ¥(0) > 0, ¥o(2) < 0).
After fixing t we see that ¢ = rwo is a supersolution for our problem, provided
€, a, B, Y, § are sufficiently small. Take ¢y = 0 for a subsolution, and apply
the theorem 1.
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In [3] we discussed some general non-existence results which can be applied
to (2.1). 1In particular, we had the following result which will be illustrated
computationally.

Proposition 2. Consider the problem (p > 1)

u' =P+ x, u(0) = u'(0) = u(r) = u'(e) = 0. (2.10)

P

-1

A
Then for A > (59) (p-1) the problem (2.10) has no positive solution; g

as defined in the theoren 3 is given by Ay = k%, k= 4.7300, see [5, p. 146].

Our next result provides a simple error estimate.
Proposition 3. For the problem (2.1) assume conditions of either theorem

3 4
1 or 2. Denote G, = max [ G(x,£)de = L. Let f(x,u) be Lipshitz in u uni-
0 384
0<x<2 0
formly in 0 < x < 2, with Lipshitz constant fO for v < u < ¢ (u0 < u< u]) in
case of theorem 1(2). 1In case of theorem 1 assume additionally that Gof0 < 1.
If u denotes the solution obtained by monotone iterations (u0 =y or ¢ in
the theorem 1), then

(2.11)

Proof. Follows by writing u-u, = ) (uk+] - "k)’ and estimating each term
k=n

as in the theorem 2. (Notice that for the theorem 1 we get convergence of both
monotone sequences to the same solution.)
Remark 1. In the conditions of the theorem 1 assume that f = f(u), f(0) > 0.

0, compute u, = f%%l xz(x-z)z. and

Then we can start with a subsolution ug

hence by (2.11)

n.n n
o 1 < £1O) . A fosp _fofg (£4 )n+1
nlc 23 1-£gh 1-ghgh 8%

00 00

(2.12)

which explains the fast convergence that we encountered in our experiments
(2=2). On the other hand, we see from (2.12) that convergence is slower, in
general, for larger 2, and it cannot be guaranteed beyond a certain value of 2.
This is no surprise, since e.g. the problem u"" = ul + 1, u(0) = u'(0) = u(e) =
u'(2) = 0 has no solution for & sufficiently large, as can be seen by rescaling
x = L&, and then applying the theorem 4 in [3].

Remark 2. Finally, we mention that all our results hold for other physi-

cally important boundary conditions for Lu = u"", since they only depended on
the positivity of the Green's function. Next we list two such problems with
corresponding Green's functions (see [5]), whose positivity is easy to check.

(I)  Lu=u"", u(0) = u"(0) = ul(g) = u"(2) = 0.
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2

Gx,E) = g7 x(5- ) (% +€? - 208) for x < £, G(x,5) = G(£,x).

(IT) Lu=u"", u(0) = u'(0) =u(z) = u"(g) = 0.

G(x,E) = 5312%&1 [3262-62%+(-52 + 206 + 2¢%)x] for x < €, G(x,E) = G(£,x).
122

3. Numerical Experiments

To compute the solution of (2.1) we were using the formula (2.2) with
ug being either sub or supersolution, or as defined in the theorem 2. In our
examples we took £ =2, a =B =y =8 =0, and computed solution at 200 mesh
points with the uniform step size h = 0.01. The integral in (2.2) was approxi-
mated by the trapezoid rule. A PASCAL program was written, and the computations
were performed with six (sometimes twelve) decimal digits; changing the function
f(x,u) required changing of only one line of code.

One remarkable thing common to all the experiments was fast convergence.
For example, for f = u2 + 1 and a subsolution ¢y = 0 it took just 5 iterations
for all twelve decimal digits to stabilize (and the errors of integration in
this and all other examples never interfered with monotonicity of iterations).
The CPU time on VAX-11 was 6.2 seconds. To check that convergence is to actual
solution, we started with a supersolution ¢ = 0.05 x2(2-x)2, and obtained the
same answer in 5 iterations. Similar computations (with six decimal digits)
were performed for other f(x,u), and some of the results are presented in the
Table 1. (The remainder term of the trapezoid rule can be easily estimated in

]
each case. Indeed, estimating up,, < [ 6, (x,E) f(£,6(£))dg, we can
0

a2
ag?
easier just to check that the iterations starting with ¢ and ¢ lead to the same
result, and decrease h if necessary).
When we tried f = u2 + 300 with subsolution ¢ = 0, the iterations diverged
(to + =), which illustrates nonexistence of solution for this equation, in

accordance with Proposition 2. We also considered f = u2 + 1 -au. For

easily estimate [G(x,&) f(E.un(E))]. In practice, however, it is much

constants a = 1 and a = 10 one gets alternating convergence as in (2.4)
(starting with ug = 0), but for a = 100 the iterations diverged. This is
because the condition Ug < u, of the theorem 2 is violated.

What happens when f(0) = 0, but one expects existence of a nontrivial solu-
tion (in addition to the trivial one). For f(u) = 10/u we were able to compute
a nontrivial solution, see Table 1, thus illustrating the theorem 3. For
flu) = u? our attempts to compute a nontrivial solution failed. This led us to
Theorem 4, which shows that the positive solution must be unstable, if it
exists, and hence not computable by monotone iterations.

Finally, we mention that by changing the Green's function, we performed
similar computations for the problem -u" = f(x,u) , u(0) = u(2) = 0. We
obtained similar results with considerably slower convergence. The reason is
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that our Green's function in (2.3) is "small". One measure of its smallness is

given in (2.5). Another one is derived by an elementary computation:

max G(x,5) = G(2/2, £/2) = T%?
Xy 5

Table 1. Accuracy = 10'6; w-subsolution, $-supersolution; number of iterations

refers to the larger one in case of two monotone sequences.

f(x,u) " ] ug Type of Convergence # of Iterations

u?+l 0 0.05x2(2-x)? Monotone 5

utex 0 0.1x2(2-x)2 Monotone 3

xsin2u+] 0 0.125x2(2-x)2 Monotone 4

u2+300 0 Divergence

u2+1-10u 0 Alternating n

u2+1-100u 0 Divergence

1075 0.00002x3(2-x)% , Monotone 22

0.18x°(2-x)

1-xu 0 Alternating 6

e XU 0 Alternating 8
! X 0 Alternating 6

utcosx
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