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ABSTRACT. Let {Xnk be an array of rowwise independent random elements in a separable

Banach space of type p + 6 with EXnk 0 for all k, n. The complete convergence
-I/p n(and hence almost sure convergence) of n k= Xnk to 0, ! P < 2, is obtained

when {Xnk are uniformly bounded by a random variable X with EIXI 2p =. When the
-i/p n

array {Xnk consists of i.i.d, random elements, then it is shown that n k=l Xnk
converges completely to 0 if and only if EIIXIIII2p... < .
KEY WORDS AND PHRASES. Random elements, Strong laws of large numbers, Complete Con-

vergence, Rademacher type p + 6 spaces.
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1. INTRODUCTION AND PRELIMINARIES.

Let (E, II II) be a real separable Banach space. Let (,A p) denote a probability

space. A random element X in E is a function from into E which is A-measurable

with respect to the Borel subsets 8(E). The pth absolute moment of a random element

X is EIIXII p where E is the expected value of the random variable IIXII p. The expected

value of X is defined to be the Bochner integral (when EIIXII =) and is denoted by EX.

The concepts of independence and identical distributions have direct extensions to E.
A separable Banach space is said to be of (Rademacher.) type p, <_ p <_ 2, if there

exists a constant C such that
n n

E X p < C E[[Xk[[ p

--k:l k k:l

th
for all independent random elements XI, Xn with zero means and finite p moments.

Every separable Hilbert space and finite-dimensional Banach space is of type 2. Every

separable Banach space is at least type while the EP and Lp spaces are of type

min{2,p} for p >_ I.

Throughout this paper {Xnk: <_ k < n, n >_ i} will denote rowwise independent

random elements in E such that

EXnk 0. for all n and k

and such that {Xnk} are uniformly bounded by a random variable X with

EIXI 2p for some l<_p <2.

(1.1)

(1.2)



806 R.L. TAYLOR and T.C. HU

Recall that an array{%nk} of random elements is said to be uniformly bounded by a

random variable X if for all n and k and for every real number t > 0

P[IIXnkll >t] ! P[ IXl > t]

Note that i.i.d, random elements are uniformly bounded by llXllll.
of this paper show that

1 n

nl/----p k=l Xnk 0 completely

(1.3)

The major results

(1.4)

where complete convergence is defined (as in Hsu and Robbins [i]) by

n=l P [ xn
k=l Xnkll > e ] (1.5)

n

for each e > 0.

Erds [2] showed that for an array of i.i.d, random variables {Xnk}, (1.4) holds

only if EIXI112p <. Jain [3] obtained a uniform strong law of large numbersif and

for sequences of i.i.d, random elements in separable Banach spaces of type 2 which

would yield (1.4) with p for an array of i.i.d, random elements {Xnk in a type 2

space. Woyczynski [4] showed that

1 n

nl/--- k=l Xk 0 completely (1.6)

for any sequence {Xn} of independent random elements in a type p + 6, 1 !P < 2 and 6 > 0,

with EX 0 for all n which is uniformly bounded by a random variable X satisfyingn

EIXI p < . Mricz, Hu and Taylor [5] showed that Erds’ result could be obtained by

replacing the i.i.d, condition by the uniformly bounded condition (1.3). In addition,

they showed that Jain’s result for i.i.d, random elements with p 1 did not require

the space to be type 2 but held in all separable Banach spaces. In this paper, (1.4)
is established in type p + 6 spaces, 1 !p < 2 and 6 > 0, for uniformly bounded row-wise

independent random elements. For i.i.d, random elements in type p + 6 spaces, it is

only if EIIXIIII 2p < . Thus, no sharper moment conditionsshown that (1.4) holds if and

are possible.

2. MAJOR RESULTS.

Many authors (starting with Beck [6] have related the strong law of large numbers
for non-identically distributed, independent random lements in separable Banach spaces

to the necessity of the space being of type p+6 for l<p < 2 and some 6 0. Conse-

quently, attention is restricted to type p + 6 spaces in this paper. Three lemmas

will be used in obtaining the major results. They are stated here without proof.

Lemma with r 1 is in most textbooks while Lemma 2 is accomplished using integration

by parts. Lemma 3 is in Woyczynski [4].

LEMMA I. For any r > I, EIXI r
< if and only if

nr-Ie[ IXI >n] < .
n=l

More precisely, r2-r nr-ip[ IXI > n]
n=l

r-i< ElXlr < + r2r n e[ IX > n].
n=l



STRONG LAWS OF NUMBERS FOR INDEPENDENT RANDOM ELEMENTS 807

and

LEMMA 2. If r >_ i, then for any p 0

E IXII < r1/p[ IXl<n ]
0

i/p

tr-iP[ IXl > t]dt

E IX I
llp],

nlIpp [ Ix >n ] + P[ IXl t]dt.
[ IXl>n llp

n

LEMMA 3. Let <_ p <_ 2 and q >_ i. The following properties are equivalent:

(i) E is of type p.

(ii) There exists a C such that for all independent random elements X X
n

in E with % 0, k i, n,

llk=Ix Xkll q_< C E
k

fIXkll p q/pE

THEOREM 4. If {Xnk is an array of rowwise independent random elements in a type

p + 6 space, <_ p < 2 and 6 0, which are uniformly bounded by a random variable X such

that (I.i) and (1.2) holds, then

n Xnl/P k=l nk
0 completely.

PROOF. Define

Ynk Xnkl I/p
< k n, n > i. (2.1)

[l[Xnkll < n ]

Then, by Lemma i (with r 2),

n

n=l k=l Xnk Ynk
X nP[ IX[ > nl/p]
n=l

n I/p: P [ ..llXnk > n ]
n=l k=l

X nP [ Ixl p > n ] ! 2EIXI 2p < .
n=l

Next, for any e > O,

p[[[
n n

n=l k=l Xnk n-7 kl Ynkll e ]

<_ X P[ U [Xnk + Ynk ]
n=l k=l

n
<_ . 7. P[Xnk + Ynk ] "

n=l k=l

Therefore,
n n

II I xnk
n
I/p kl Ynk 11 0 completely,

and it sufficies to prove that
n

Ynk 0 completely. (2.2)
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To this end, let

Znk Ynk EYnk (k=l,2 n; n=1,2 ).

Then for <_ q <_ 2p it follows by Hider’

so that

Furthermore,

s inequality that

(gllZnkllq) I/q <_ 2(EllYnkllq) I/q

<_ 2(gllYnkll2P) I/(2p) <_ 2(EIxI2P) I/(2p)

E[[Znk[[q _< 2q(E[xI2P)q/(2p)

<_ 22P(I + EIX [2p) CI say.

Znk <_ Ynkll + EYnk <_ 2nl /p.

(2.3)

(2.4)

Following the techniques of Taylor [7] in expanding a high power of a sum, let

r p+6 and be chosen so that

1)-is is an integer and v > (--
r P r

(2.5)

It is readily seen that E llZnkll < , so that, by Lemma 3,

( n (kl)sE IIk=l Znkl[j < C E I[Znkl[r

c x E ][Znkl ks J
(2.6)

where the sum is extened for all s-tuples (kI, ks with k.3 I, 2, n for each

j. The general term to be considered then will have

ql of the k’s $I’ qm of the k’s Sm;

where

r of the k’s D I, r of the k’s ;
r <_ rqi < 2p, rrj > 2p, and

m
l. qi + 52. r. s.
i=l j=l 3

(2.7)

(2.8)

Clearly, qi I. Then, using (2.3) and (2.4), we can conclude that

m

ZnDJ
rr

E i=lll Zni
rqi

II II j
j--i J

< C (2nl/p)rrj -2p
j=l

ilrrj-2p

_m+
2
jl (rrj

G
1

2p) . (rrj/p)-2
nJ=l
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2C n

X (rr. Ip)-2
j=l

X (rr Ip)-2
j=l=C

2
n say.

Combining all possible terms of form (2.9), we can write

n

! c
3

x m
ql qm;rl r 61 m;ql q i

C
3

S say,

ql qm;rl r ql qm;rl r,

rrj)
j=l

(2.o)

where is extended over all m-tuples (ql qm and -tuples (r r) such that

Conditions (2.7) and (2.8) are satisfied (the cases m 0 or 0 may also occur),

while is extended over all (m + ) tuples (6 ’m; HI N) of different

integers between and n and C is a constant independent of n. Let m + Obviously,

it ! s. We distinKuish two cases according to t 2 or t i.

Case t 2. By (2.9)

S
ql qm;rl r

<_ C
2

n

61 m;rl n - (rrj/p) 2
j=l

! C
2

n

X (rrj/p) 2 + t
j=l (2.t)

Now, the power to which n is raised here can be estimated by means of (2.8) and qi
as follows

rr. 2 + t
P j=l 3

i I o )rs 52 rqi 2(t m) + t
P i=l

rm

P P
2(t m) + t

Z t-p m( 2). (2.12)

We distinguish two further subcases according to m t or m ! t i.

Subcase m t. By assumption ! p 2. Also, qi for each i.

Thus, m s and, by (2.5).
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I. (2.13)

Subcase m t i.

m 0. Thus, again

t+m

Then t m and even t m 2 in the particular case where

Now we turn to

Case t i. In this case necessarily m 0 and i, consequently r

n
S SO

7. EllZnkll rs.
ql’ ’qm;rl ,r ;s k=l

s and

Using Lemma 2, we obtain that
n

7.1 n=l n

<2
v

7. =I EllYnk IIn=l k
t/p

n 0
n

t-<_2 7. 7.
n=l k=l

P[llXnkll > t]dt

1/p

2
v . n

t-v n e[ IXl > t]at.

1/p 1/v
Letting t n s and applying Lemma I (with r 2), it follows that

i nl/P sl/7.1 <_ 2
v

7. n P[ IX[ > ]ds
n=l

.i i/u
2
v

7. nP[ Is- X[ p > n]ds
n=l

(2.15)

2v+l fl 2p/ 2ps- EIX dsi

2 v+l 2p

Using Markov’s inequality, (2.7) and (2.10) (2.15) we have, for any e > 0,

7.2(e) z PElf Znkll > e]
n=l n

< z / E Znklln=l (n P)

n
Z

:n
1/p kl Ilznk )n=l
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CC3 n
<_ -- [nl n

v/p k=l EllZnkll
v

E

c
2 s (t)+ v/P t=2 qm;rl rn=l n ql -- -t-m([ 2)

n
p P ]

CC3 s -t-m(r 2)

[7.1 + C
2

7. 7.
(t)

7.n P ]
e t=2 ql qm;rl r n=l

where (t) means that the sum is extended over all m-tuples (ql qm and -tuples

(r r) with Conditions (2.7) and (2.8) such that m+ t. Since the number of

terms in each of (t) is finite and the exponent of n is less than -I, for every e > 0,

we have 7.2(e) < . Thus, we have proved that

n

lln- k=l Znkll 0 completely (n ).

In order to prove (2.2), we need to establish

n

3 nl n- k--i llEYnkll < " (2.16)

To achieve this goal, we will proceed as follows. By (2.1),

Ynk Xnk I
p[ Xnk <_. n ]

Xnk- Xnk I i/p[ llXnkll n

Since EXnk 0, hence

lIE Ynkll <_ E(llXnkll I i/p])"[ llXnkll > n

Thus, using Lemma 2,

I n

X:3 <- i/p k E
n=l n

([[ Xnk I
[ llXnk[l > nl/p] j

.= 7.n (nl/PP[ llXnkll nI/p] + [, P[ llXnkll >t ]dt)
n=l k=l nllP

Letting t n

< X (n P[ IX[ nI/p] + n P[ IX > t]dt ).
n=l /p

n
s and applying Lerra 1, we can conclude that

i/p
3 <- 7. n P[ [Xl p > n] + 7. n P[ IX[ > n

n=l n=l
s]ds

<_ 2 EIXI 2p + X P[ l,s -IX[ p > n]ds
n=l
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2p 2ps- EIX ds

4PCI EIxI2P’2p-i

proving (2.2) through (2.16), and thereby completing the proof of Theorem 4. ///

Note that if sup EllXnkll2P+=<"" , for some > 0, then there exists a r.v. X such
nk

that {Xnk are uniformly bounded by X and EIXI 2p < =. Therefore, Corollary 5 follows.

COROLLARY 5. Let E be a type p+ 6 separable Banach space for < p 2 and 6 0.

If %ukP E[[Xnkll2P+ for some = 0, then

n

[[n-p k=l Xnk[[ 0 completely.

For type + 6 spaces, Taylor [7] obtained

k=l ank Xnk 0 completely (2.17)

where {Xnk is uniformly bounded by X with E[XI l+I/r
< and {ank are Toeplitz weights

with max 0(n-r) In the special case of uniform weights ank
, i < k < n, thenank

r I nd Theorem 4 can be thought of as an extension of this result. Extension of

Theorem 4 to infinite arrays and Keneral weights {ank are possible but the detailed

verification of their proofs are not included here. However, it will be shown next

that the moment condition EIX[ 2p < cannot be reduced in Theorem 4. In particular,

for an array {Xnk} of i.i.d, random elements in a type p+ 6 space with EXII 0, it will

be shown that the SEEN holds if and only if E[[Xll[[ 2p < .
THEOREM 6. Let {Xnk} be an array of i.i.d, random elements in a type p + 6 space,

lip < 2 and 6 > 0, with EXII 0. Then EIIXIIII 2p < if and only if

i k=In Xnk 0 completely. (2.18)
nl/P

PROOF: From Theorem 4, we know that E IIXIIII 2p implies (2.18) since the array

{Xnk} is uniformly bounded by [[Xll[[.
Now, assume that (2.18) holds. Since {Xnk} are i.i.d., for every n and > 0

n n

By (2.18), for every e O,

xkll > ] < -, (2..)

1 n
which says kiXkk 0 a.s..

As a consequence,
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x
n In_l )i/P n-i

nl/P nn -n i Xkk n n-l k=l xkk 0 a.s..

Let e I. It follows from Lemma (with r I) and the Borel-Cantelli lemma that

EIIXIIII p < + 2 P [ fIX p n]
n;1

+ 2 P[ II Xnnll ] < .
n=l n

Hence

nP[ llXllll p n] O. (2.20)

By (2.18),

n 1/pP[ . < n ]
k=l Xnk (2.21)

Therefore, from (2.20) and (2.21) there exists N such that if n > N then

nP[ llx

Next, define the events

n
z p < n]and P [ llk=l xnk " (2.22)

n 1/p
Ank [l<i<kmax llXnil[ < 2nl p, llXnkll 2nl p, and lli=im Xnill < n ]

ik

Clearly, {Ank:
for each n i, 2 A familiar reasoning yields that

n n
e [ [[- kl xnk[[ > ] >_ - P(Ank)

n k=l

n ’f[k--1 2nl/ n

k=z e [ llXnk > 2nllp ] p
li=l

[ llxni
P ] n [ i=z x < n

L i+k

(k i, 2 n: n i, 2 ).
n l/p]k 1, 2,’ n} are disjoint subsets of the event [ E X > n

k=l nk

Z P [ llXnkll > 2nllp ] p [ Xnill < n ] P [ U [llXnill > 2n

k--I i i=l
l/p] ] )

> " P [ XI
> 2nl /p ] P [ x II < (n-

k=l I i

I/p ] -nP [ IIx 2n Ip ] 9"

Hence, by (2.22), for n >_ N,

n p
p[ [[--p k Xnk[[ > ] >_ nP[ llXll[l > 2pn ]"

n

Therefore, Z nP[ IIXIIII p > 2Pn ] < .
n=l

Thus, Lemma I yields EIIXIIIIzp < . III
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CONCLUDING REMARKS.

i. It should be noted that the case p in Theorem 6 is obtainable in a type

space (cf: Theorem 4 of Hu, Moricz and Taylor [5]). In which case type + 6 is not

needed.

2. For sequences of independent random elements which are uniformly bounded by a

random variable X with EIXI p < , (1.6) holding necessitates the space being of type

p + 6 (cf: Woycyznski [4] and Maurey and Pisier [8]). Thus, the necessity of type

p + 6 follows for Theorem 4.

3. Theorem 6 shows that Theorem 4 is the best possible moment condition when no

conditions on possible relations between the rows of the array are assumed.
-i/p n X

k
0 a.s for i i d random elements4. In [4] it is mentioned that n k=l

with EX 0 and EIIXIII p < apparently is equivalent to the space being of{X
n type

p. Thus, it is interesting to conjecture whether Theorem 6 remains valid for only

type p spaces ! p < 2. Certainly, the "if part" is true for type p spaces, and Remark

indicates that it is true p 1.
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