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ABSTRACT. The present paper, which is a continuation of our earlier work in Annali di
Mathematica ({1} and Journal Math. Seminar ([2] (EYEVOEPIA), University of Athens,
Greece, deals with the problem of determining sufficiency conditions for the non-
vanishing of generalized polars (with a vanishing or nonvanishing weight) of the
product of abstract homogeneous polynomials in the general case when the factor
polynomials have been preassigned independent locations for their respective null-
sets. Our main theorems here fully answer this general problem and include in them,
as special cases, all the results on the topic known to date and established by Khan,
Marden and Zaheer (see Pacific J. Math. 74 (1978), 2, pp. 535-557, and the papers
cited above). Besides, one of the main theorems leads to an improved version of
Marden's general theorem on critical points of rational functions of the form

f £ ...fp/f ...fq, fi being complex-valued polynomials of degree n,.
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1. INTRODUCTION.

A few years ago, the concept of generalized polars of the product of abstract
homogeneous polynomials (a.h.p.) was introduced by Marden [3] while in his attempt to
generalize to vector spaces a theorem due to Bdcher [4]. His formulation involves the
use of hermitian cones [5], a concept which was first used by HSrmander [6] in
obtaining a vector space analogue of Laguerre's theorem on polar-derivatives [7] and,
later, employed by Marden (3], [8], in the theory of composite a.h.p.'s. 1In all these
areas the role of the class of hermitian cones has been replaced by a strictly larger
class of the so-called circular cones. This was successfully done byZaheer [9], [10],
[11] and [5] in presenting a more general and compact theory which incorporates into
it the various independent studies made by Hormander, Marden and Zervos. A complete
account of the work to date on generalized polars, which fall in the category of
composite a.h.p.'s in the wider sense of the definition of the latter now in use (cf.

(51, [12], [13], [14]) can be found in the papers due to Marden [3], Zaheer [5], and
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the authors (1], [2]. Generalized polars with a vanishing weight as well as the ones
with a non-vanishing weight have beea considered in the first two papers, while the
third (resp. the fourth) deals exclusively with the ones having a vanishing (resp. a
non-vanishing) weight. But all have a common feature that the factor polynomials
involved in the generalized polar of the product have been divided into two or three
groups, each of which iIs preassigned a circular cone containing the null-sets of all
polynomials belonging to that group. Our aim here is to consider generalized polars
with a vanishing or a non-vanishing weight where, in general, no two factor
polynomials are necessarily required to have the same circular cone in which their
null-sets must lie. In fact, we take up the general problem of determinling
sufficiency conditions for the non-vanishing of generalized polar (with a vanishing or
a non-vanishing weight) where the factor polynomials have been preassigned mutually
independent locations for their respective null-sets. Our main theorems fully answer
this general problem and include in them, as special cases, all the corresponding
results on the topic known to date and established in Marden [3], Zaheer [5] and the
authors [1], [2]. One of the main theorems of this paper leads to a slightly improved
form of Marden's general theorem on critical points of rational functions [7].
2. PRELIMINARIES.

Throughout we let E and V denote vector spaces over a field K of character—
istic zero. A mapping P : E> V is called (cf. [6], [15], [16], and [9]) a

vector-valued a.h.p. of degree un 1if (for each x, y € E)

n k, n-k
P(sx + ty) = I A (x,y) st vV s, t €K,

k=0 k

where the coefficients Ak(x,y) € V depend only on x and y. We shall call P an
a. h. p. (resp. an algebra-valued a, h. p.) if V 1is taken as K (resp. an algebra).
We denote by P: the class of all vector-valued a.h.p.'s of degree n from E to V
(even if V 1is an algebra) and by Pn the class of all a.h.p's of degree n from E
to K. The nthpolan of P is the unique symmetric n-linear form PEXI’XZ""’xn)

from E° to V such that P(X,X,s00,x) = P(x) for all x € E (Hormander [6] and
Hille and Phillips [15] for 1its existence and uniqueness). The kth polar of

P, for given X 5Xysene X in E, is defined by

P(xl,xz,...,xk,x) = P(xl,...,xk,x,...,x).

The following material is borrowed from Zaheer [17], [1] and [2].
*
Given m, € K and Pk € Pn (k = 1,2,...,q9), we write

k
Qx) = Pl(x)Pz(x)... Pq(x), (2.1)
Qk(x) = Pl(x)... Pk-l(x)Pk+l(x)"' Pq(x), (2.2)

and

q
Q(Q;xl,x) = kil kak(x) Pk (xl,x) v X% € E, (2.3)
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and define D(Q;xl,x) as an algebra-valued generalized polar of the product Q(x)
q . .

[5]. The scalar I m is called its weight. The Term 'generalized polar' will be
k=1

used in special reference to the case when V = K, so as to conform with the existing

terminology [S5]. As In Hille and Phillips [15], if a = n1 + n2 + oo + nq, we re—
* *

call that Q€ Pn’ Qk € Pn_nk and Pk(xl,x) is an algebra-valued a.h.p. of degree
nk-l in x and of degree 1 in X 1 < k { q. Therefore, P(Q:xl,x) is an
algebra-valued a.h.p. of degree n-1 In x aand of degree 1 In Xy

Given a nontrivial scalar homomorphism L : V+ K [18) and [l] and a polynomial

*
P e Pn’ we define the mapping LP : E * K by
(LP) (%) = L(P(x)) VxE€ E. (2.4)

Obviously, LP € Pn' In the notations of (2.1) and (2.2) the product of the poly-

nomials LPk € Pn is given by LQ and the corresponding partial product (LQ)k

(achieved by deleting the kth factor in the expression for LQ) is given by LQk' This
immediately leads to the following

REMARK 2.1. The algebra-valued generalized polar D(Q;xl,x) of the product Q(x)
and the generalized polar P(LQ;xl,x) of the corresponding product (LQ)(x), with the

same mk's satisfy the relation

L(‘b (Q;xl ,X)) = (LQ;xl ,X)

for every nontrivial scalar homomorphism L on V.

If K 1is an algebraically closed field of characteristic zero, then we know [19]
and [20] that K wmust contain a maximal ordered subfield Ko such that K = Ko(i),
where -i2 is the unity element in K. For any element 2z = a+ ib € K (a,b € Ko) we
define z = a - ib, Re(z) = (z + ;)/2, and lzI =+ (a2 + bz)l/2 in analogy with the
complex plane. We denote by Km the projective field [5] and [21] achieved by
adjoining to K an element ®w having the properties of infinity, and, by D(Km),
the class of all generalized circular regions (g.c.r.) of K, . The notions of Ko-
convex subsets of K and of D(Kw) are due to Zervos [21], but the definitions and
a brief account of relevant details can be found in [5]. For special emphasis in the
field C of complex numbers, we state the following characterization of D(q»): The
nontrivial g. e. r.'s of € are the open interior (or exterior) of circles or the
open half-planes, adjoined with a connected subset (possibly empty) of their boundary.
The g.c.r.'s of q», with all or no boundary points included, are termed as
(classical) circular regions (c. r.) of C,-

In vector space E over an algeraically closed field K of characteristic zero,
the terms 'nucleus', 'circular mapping’ and 'circular cone' are due to Zaheer [5].
Given a nucleus N of E? and a circular mapping G : N + D(Km)’ we define the

circular cone EO(N,G) by

g, ne) = LT,
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where

TG(x,y) ={sx+ty#* o | s,t € K; s/te G(x,y)}. (2.5)

REMARK 2.2. (I) [l}. 1If G is a mapping from N 1into the class of all subsets
of K, (so that G(x,y) may not necessarily be a g.c.r.), the resulting set EO(N,G)
will be termed only a cone in E.

(11) If dim E = 2, then [10] every circular cone EO(N,G) is of the form
EO(N,G) = {sxo + oty # o ' s,t € K; s/t € A}

for some A€ D(Kw), where xo,y0 are any two linearly independent elements of E,
with N = {(xo,yo)} and G(xo,yo) = A.

(ITI) We remark [5] that any two (and, hence, any finite number of) circular
cones can always be expressed relative to an arbitrarily selected common nucleus.
3. THE CENTRAL THEOREM.

Unless mentioned otherwise, K denotes an algebraically closed field of
characteristic zero, E a vector space over K, and V an algebra with identity
over K. The field of complex numbers ls denoted by C. We denote by L [x,y] the
the subspace of E generated by elemeats x and y of E, and by L2 [x,y] the
set product L [x,y] x L[x,y] (i.e. the set of all ordered pairs of elements from
L [x,y]).

In this section we establish the central theorem of this paper, which gives
sufficiency conditions for the non-vanishing of generalized polars having a vanishing
or a non-vanishing weight aand which answers the general problem mentioned in the
introduction. Apart from deducing the main theorems of the authors proved earlier in
[1] and [2] the present theorem applies in the complex plane to yield an improved form
of a general theorem due to Marden [7]. 1In the following theorem we take, without
loss of generality (cf. Remark 2,2 (III)), circular cones with a common nucleus.
Consistently, we shall denote by Zp(x,y) the null-set of an a.h.p. P (with respect

to given elemeats x,y € E), defined by

ZP(x,y) = {sx + ty # ols,t € K; P(sx + ty) = o}.

THEOREM 3.1. For k= 1,2,..., q, let P € P and E(k) = E (N,G, ) be
k nk [) o k

circular cones in E such that for all (x,y) € N and for all

Z (x,y) €T
P G, (%,5)

k. If b(Q;xl,x) is the generalized polar of the product Q(x) (cf. (2.1)-(2.3)) with
m >o for k< p(<q) and m <o for k> p, then #(Q;xl,x) # 0 for all

of E such that x, e E- vl E(k) and
1 [
q k=t
xe€E-(V E (k)) uT(x ,y ), Where (x ,y ) 1is the unique element in
o S"7o0’"0 o’"o
2 k=1
N nL [x,xll, X =YX+ Gyo and

linearly independent elements X%,
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q q
S(x,y ) = {p e Kw' kil m /(e =P = (kil m /(e = ¥/8); pkeck(xo,yo)}.

REMARK. Let us note that p = w must belong to S(xo,yo) in the case when Y/§ # w
and w gu 1 Gk(xo’yo)' Also the hypothesis 'x1 £En q E(k)'

k=1 k=1
otherwise, S(xo,yo) would be all of K and the theorem would become uninteresting.

is necessary. For,

PROOF. Let x,x1 be linearly independent elements of E such that

x € (u 9 E(k)) u T.(x ,y ) and x, & n q E(k), where (x ,y ) 1is the unique element
k=1 % S*7o’’0 1 k=1 o o’"o

in Nn J: [x,xll (cf. definition of nucleus [5]). Then there exists a unique set of

scalars a,8,y,8 (with a8 - By # 0) such that x = ax, + Byo and X, = Yxo + 6y0.

1

Obviously, the choice of x implies that a/B £ (u 96 (x ,y))u S(x_,y ), due to
k=1 k70’70 o’’o

the notation in (2.5). We claim that a/B # w, This is trivial when Y/§ = w (since

§ =0 and af - By # 0). It is obvious also when Y/§ # w and w belongs to
vie (x_,y ). However, in case Y/§ # w and w £ vlg (x ,y ), the definition of
k=] K o770 k=] K 070
S (xo,yo) says that W must belong to S (xo,yo). So that o/B # w in all cases.
The fact that K is algebraically closed allows us to write, for each k = 1,2,...,q,
n

Pk(sx + tx,) =1 k
1 .
j=1

(6,8 - Y

8T Tt

n

. k
= § #

Since Pk(x) §=1 ij # 0 for all k, we have that for each k (1 < k < q) jk 0

for all j =1,2,...,n If we set /ij then, using the same technique as

K pjk = ij
in the beginning of the proof of Theorem 2.5 due to Zaheer [5], we conclude that
p

3] (Gk(xo’yo)) for j = 1,2,.e4,n 1<k<q (3.1)

jk k’ S

and, further, that U(Gk(xo’yo)) are Ko—convex g.c.r.'s of K, where U 1is the
homographic transformation [21] of K, given by U(p) = (8p - Y)/(-Bp + a). There-
fore, (3.1) and the Ko—convexity of U(Gk(xo,yo)) give

k
. (l/nk) pjk € U(Gk(xo,yo)) for k =1,2,40.,q (3.2)

]

uk(say) =
J

This implies that there exist elements pk € Gk(xo,yo) such that

My = U(pk) = (69k - 1{)/(—!39k +a) #w for k=1,2,...,q. (3.3)
Let us write
“k
Vi = m W = jil (mk/nk) pjk v k=1,2,.04,q. (3.4)
We now claim that vl + v2 +ooot vq # 0. First we notice that the Vk's cannot vanish

simultaneously. For, otherwise, Y/§ would belong to all the g.c.r.'s Gk(xo’yo)
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for k=1,2,...,q, which in turn would imply that

- q q (k)
X, = Yxo + Gyo € a' T (xo,yo) < E0 .

n
k=1 Ok k=1

This contradicts the fact that x F nd Egk). Therefore, in order to establish the
k=1
sald claim, it remains only to deal with the case when at least any two of the vk's

do not vanish (since the claim 1is obvious otherwise). Now, with this assumption,

suppose on the contrary that vl + vy + e + Vq = 0. Then equations (3.3) amd (3.4)

would imply that
q
kil w (8 o = Y)/(-B p +a)=0.

Since a/f # w, we see that B # 0 and, consequently, the last equation can be

written as

q
kil m [-8/8 + {(ad/B) - Y}/(-B Pt =0.
Therefore,
q q
(a/8) m/(-Bp, +a)=(6/8) L mes

k=1 k=1
where A = a8 - BY # 0. Or,

P om/(a/8-p) = =B (T m) e (3 m)
a -p = m, = .
oy Tk S I CY ) R T N

That is, irrespective of whether § =0 or § # 0, we get
q q
kil mk/(“/B - Dk) = (kzl mk)/(G/B-Y/G),

2
= n
where P € Gk(xo,yo) for k= 1,2,...,q, (xoyo) EN L [x,xl] and
X, = Yx o+ 6yo. This implies that a/B € S(xo,yo) and, hence, that
X = ax + Byo € Ts(xo’yo)’ contradicting the choice of x already made. Therefore

v, o+ Vo teee t vq # 0. But we know ([5] or [3]) that

1
g q
2(Q;5% ,x) = - [kil jfl (m /) ojkl. kzl P (%)
q q
= - (kil Vk). kzl Pk(x) (due to (3.4)).

Since Pk(x) # 0 for all k and since vl + oo + vq # 0, the proof is complete.

q
If we take I m, = 0 in the above theorem, the set S(xo,yo) remains unchanged
k=1

when x, varies freely in L[xo,yol subject to the condition that X % n q Egk).

1 k=1
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In order to get a simpler and more interesting version in which x varies freely

1
nd E(k) = ¢. We do precisely
k=1

this to obtain the following theorem which deals exclusively with generalized polars

over all of E it is desirable to further assume that

having a vanishing weight.

THEOREM 3.2. Under the notations and hypotheses of Theorem 3.1 if we assume that

q
k
nd Eg ) =o and I m =0, then 2(Q5x,X) * 0 for all linearly independent
k=1 k=1

(q+1)

elements x,x where Eo

q+l (k)
of E such that x € E -u E0 ,

= E (N,G
k=1 °

1 q+l) is

the cone defined by
q
GQ+l(xo’yo) =tlee Kml kil mk/(p - pk) =0 or® Gk(xo’yo)}

for all (xo,yo) € N.

PROOF. If X,x, are any linearly independent elements such that X € E and

+ 2
X ¢!ﬁ ! E(k), then there exists a unique element (xoyo) e NN L [x,xll such that

o

k=1

- s i = i Im =0).
X Yxo + Yo and, in the present set up, S(xo,yo) Gq+l(xo’yo) (since k=lmk 0)

That is, x, &n d E(k) =¢ and x ¢ ( v Egk)) u TS(xo,yo). Now the proof follows

Iy © k=1

from Theorem 3.1.

As application of Theorem 3.1 in the complex plane we prove the following
corollary which, apart from generalizing the two-circle theorem and the cross-ratio
theorem of Walsh [22] (cf. also [7], Theorems 20,1 and 22,2), improves upon Marden's
general theorem on critical points of rational functions ([7] or [23] and [24]). In
the following, Z(f) denotes the set of all zeros of f.

COROLLARY 3.3. For each k = 0,l,c¢.,P, et fk(z) be a polynomial (from
C to C) of degree . If C € D(Cw) such that Z(fk) < € for k= 0,1l,¢04,p

Kk
and if wé nP Cp» then every finite zero of the derivative of the rational function
k=0
fo(z)fl(z)...fq(z) ) ,
f(z) = (q < p) 3.5
fq+l(z)fq+2(z)...fp(z)
P+l
lies in v Cy» where
k=0
p
Cppp = (P e q”'kio m /G =p) =050 €Cl (3.6)

and m =n  or -m according as k<4 or k>q.
PROOF. In view of Remark 2.2 (II), the sets

(k) .
B, = E(N,6) = {sx +ty #0[s,t€ G s/teCl,0<k<p,

where x = (1,0), Vo = ,1), N = {(xo,yo)} and Gk(xo’yo) = C,, are circular cones

nP M. Letting £(2) = I
o k
k=0 j=o

in @ such that x, = (1,0) € zj, 0<k<p, we

ajk
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define the mappings Pk: 02 + C by
£

Pk(x) H Pk(sxo + tyo) =
j=o

n -j
a, Sjt k vV x = (s,t) € Cz.
jk

Then Pk is an a.h.p. of degree nk from C2 to C such that

ZPk(xo,yo) < TGk(xo’yo) for k=20,l,...,p. This is so because

n
P (x) = Pk(sxo + tyo) . fk(s/t) Vx = (s,t) # 0 (3.7)

and because Z(f ) c C =T, (x ,y ). Now we consider the generalized polar $(Q;x ,x)
k" — "k Gk o’’o 1
of the product Q(x) of these a.h.p.'s, with m, = m or -n according as k < q or
k > q. If we take X =x = (1,0) (so that 5 = 1 and t1 = 0), we see as in
[5], that
n -1

k

Pk(xo,X) = (l/nk)aPk/as = (l/nk)t £, (s/t) (3.8)

for k=0,l,...,p. If we set nO + n1 + ae0 + np - 1=m and define

Fk(z) = fo(z)fl(z)'"fk-l(z)°fé(z)'fk+l(z)'"fp(z)’

equations (3.7) and (3.8) imply that, for x = (s,t) € Cz,

p
2(Q;3x,,x) = t" I (m/n) F (s/t)
o

k=
o, 9 P
=t [I F(s/t) - I F(s/t)]
k=0 k=q+1
= P (s/t) e [£ . (8/t)ecf (s/t)]%. (3.9)
q+l p
Since X = X, £ aP E(k) and since Theorem 3.1 is applicable in the present set up
k=0
(withy =1 and 6 =0, so that Y/§ =w), it implies that &(Q;xl,x) # 0 whenever
the element x = (s,t) 1is linearly independent to xo such that x ¢ up+1 Egk), where
k=0
(p+1) = = # 3
E, = EO(N,GP+1) {sxo +ty * o|s,te C; s/t € Gp+1(xo’yo)}

and where

p
(xgoy) ={pec| I m/G-p)=0;50 €6 (x,y)}

G
p+l k=0

e C}

p
={pecg|: m /(P = b)) =050 €C

k=0
= Cp+l’ (due to the choice of LY made above).

That is, O(Q;xo,x) # 0 for all elements x = (s,t) for which t # 0 and for which
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p+l
s/t £ VU Cpe Finally, (3.9) says that f'(s/t) # 0 for all s,t € C such that t # 0
k=0 p+l
and s/t £ U Ck' This establishes the corollary.
k=0
REMARK 3.4. (I) 1In the special case when the g.c.r.'s C are specialized as

k
the closed interior or the closed exterior of circles, we claim that the above corol-

lary reduces essentially to Theorem 21,1 of Marden [7]. This is upheld by the
following arguments: 1f the Ck are taken to be the regions 0ka(z) <0 of
Marden's Theorem 21,1, then Lemma 21,1 of Marden (7] and the succeeding arguments

ptl
therein show that the region v Ck in our corollary is precisely the region
k=0

satisfying the p+2 inequalities 21,3 in Marden's theorem.
(II) In what follows we show that Corollary 3.3 holds as such when C is re-

placed by K, provided the term 'derivative' ls replaced by 'formal derivative'. We

n
know by ([S] or [12]) that the polynomial £'(z) = 2 kakzk_l is called
k=1

n
the formal derivativeof the polynomial f(z) = & akzk from K to K and that

k=0

n
'= X .o ! ce
(£, fyeeef) = SR SPPNE NI A SURETRL A

where the fi are polynomials [12]. 1If we now define the formal derivative of the
2
. . [ - [ []
quotient fl/f2 (fi being polynomials) to be given by (fl/fz) (flf2 flfz)/(fz) ,

then the formal derivative of the quotient
fo(z)fl(z)...fq(z)/fq+l(z)...fp(z)
is given by equation (3.9).

q p

1 D 2

[ 2 F(2) - £ F (/I  (2)eeof (2)]7. (3.10)
k=0 ¥ k=qtl & g+l P

In view of the definition of the formal derivative f'(z) of a polynomial £(z)
from K to K and of formal partial derivatives 3P/ds of a polynomial P(s,t) from
K to K [5], we can easily show that (Corollary 3.3 still holds whenC is replaced by
K. The proof proceeds exactly on the lines of the proof of Corollary 3.3, except only
that we replace € by K all along. Let us point out that the expression (3.10) is
precisely the formal derivative of the function £(z) in (3.5) and it justifies the
validity of steps (3.8) and (3.9) in the proof of Corollary 3.3.

(III) We remark that in Corollary 3.3, we must add the hypothesis ' n P Ck =9',
k=0
in order to have a nontrivial result for the rational function f(z) with
- 1
ng + eee + nq = nq+1 + cee + np. For, if a point ¢ is commog to all the Ck s,
i = = uue = . i X =
then fixing Po 91 . Dp € 1in (3.6) we see that (since . m 0)
:
mk/(P =P = (
k=0

and, hence, that Cp"_1 = C.

p
L )/(p -¢) =0 Vp EC
k=0 mk
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(IV) It has been shown by Marden [7] that Walsh's cross-ratio Theorem 22,2, is a
special case of Marden's general Theorem 21,1, but only in terms of closed Interlor or
closed exterior of circles (a proper subclass of D(qu)). Whereas, our Corollary 3.3
validates Walsh's theorem in terms of g.c.r.'s. In fact, applying our corollary in
the set up of Walsh's theorem with Ci's taken as g.c.r.'s, we conclude that every
finite zero of the derivative of the function fl(z)fz(z)/f3(z) lies in u 4 c.,

i
where =1

c,=1lve cwlnl(p =P+, /(= Py) ~ng/(P = py) = 05 p.E Chl

2 i

In veiw of Lemma 4.2 of the next section, we see that C4 = H, for K=¢€, A = n2/nl
G, = C,, and that
i i

3

) 3
(c, - wh - o> = (r - -, c,
i=1 i=1
where
R, = (v e, PaPysP ) = = my/np; Py B Chl

Consequently, every finite zero of the derivative of the said function lies in Cl UC2U
cyuc, where C =R, - {w}. This shows that an improved vernsion of Walsh's cross-ratio
theonem follows from Corollarny 3.3.

(V) It may be observed that an improved form of Walsh's two-circle theorems in
its complete form ([5], Corollaries 2.8 and 4.3) may also be obtained from the above
corollary. To this effect we apply Corollary 3.3 in the set up of Zaheer's Corollary
4.3 [5], with the Di's replaced by g.c.r.'s Ci such that w € Cl n CZ’ and
conclude that every finite zero of the derivative of the function fl(z)/fz(z) lies

in y 3 C where

’
i=1 i

c, loe cmlnl/(p =P -0,/ =p)) =050, & Cl

=1{p e le" = (P, - n, P )/ (0, - n); Py € Cle

We point out that, in case the Ci's are taken as the regions Di of Corollary 4.3
of Zaheer [S5], the region C3 is precisely D(c3,r3) (cf. notation there) and we are
done. In the case when n =n and C, N 02 = ¢, the conclusion just drawn still

holds, but in this case th; regfon C3 is empty, and we are done with Corollary 2.8
in [5].
4. THE CASE OF ALGEBRA-VALUED GENERALIZED POLARS.

Our aim in this section is to obtain a more general formulation of Theorem 3.1
that could answer the corresponding problem for algebra valued generalized polars
having an arbitrary weight. 1In fact, it will be shown that, whereas the main theorem
of this section does include in it the main theorem of the preceding section, it also
incorporates into it a variety of other known results. First, we describe some
concepts and establish some results that we need in this section. We refer [17], [1]

and [2] for the following material.
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A subset of M of V is called fully supportable (initially termed as 'A-supportable’
by Zaheer [9]) if every point & outside M 1is contained in some ideal maximal
subspace of V which does not meet M. 1In other words, for every £ € V - M, there
is a unique nontrivial scalar homomorphism L on V such that L(§€) =0 but L(v) # 0
for every v € M [18]. If M is a fully supportable subset of V, then M is a supportable
subset of V (regarded as a vector space), but not conversely (for definition of
supportable subsets see [6]). We remark that the complement in V of every ideal maximal
subspace of V is a fully supportable subset of V. Given Pe P; and a fully

supportable subset M of V, we shall write, for given x,y € E,
EP(x,y) = {sx + ty # Ols,t € K; P(sx + ty) ¢ M. (4.1)

REMARK 4.1. Since identity map from K to K 1is the only nontrivial scalar
homomorphism on K, the set M = K - {o} 1s the only fully supportable subset of K
(take V = K in the definition) and the corresponding set EP(x,y), as given by (4.1),
becomes the null-set ZP(x,y) of P as defined in the beginning of Section 3.

In the next few lemmas, the notation (p, pl, Pys 03) stands for the cross-
ratio of an element p € Kw with respect to given distinct elements 91,92,93 € Km
and it designates a unique element in Kmﬁordefinitionandotherrelevantdetailssee[5]).

LEMMA 4.2. Given an element A > 0 in K and g.c.r.'s G; € D(K ) for i =1,2,3,

let us define

=]
(]

o ex|1/(p - P+ A0 = 0,) = (1)/(p = py) =05 0, € G}

and

w
]

{o ek [P, py, 0,00 =250, 861,

If Gln Gzn G3 = ¢, then

(H, - {w}) - v 3 Gy = (Ry - {ul) -y 3 G-
i=1 i=1
PROOF. In order to prove the lemma it is sufficient to show that, if

p ¢ G, uG €6 (i =1,2,3), the equation

U G3 u {w} and °

2

Ve =p) + 2 -0, - (1 +X)/(p-py) =0 (4.2)
holds true if and only if the equation
(P, Py, Py P) = -2 (4.3)

holds true. First, we claim that none of these equations can hold unless pl, 92, 03
are distinct elements of Kw' This is obvious in case of (4.3) due to the definition
of cross-ratio. In case of (4.2), this follows from the fact that if any two of the

pi's coincide and if (4.2) holds then all the three must coincide, contra-

dicting that Gln G2 nG3 = ¢. Therefore, we assume that pl, 92, p3 are distinct

elements of Km and so we divide the proof into the following two cases:
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Case (i). ol, 92, 03 # w, In this case, since p, pl, 92, p3 are distinct

elements of K, the equation (4.2) holds if and only if
(pl - 03)/(9 - ol)(p - 93) + A (p2 - 93)/(9 - pz)(p - 93) =0

or, if and only if

(p - 02)(93 - pl)/(p - pl)(p3 - 92) ==

This is true if and only if (p, P3s Py pl) = -A, That is, (4.2) holds if and only if
(4.3) holds.

Case (ii). One of the pi's is w. In this case, let us point out that PP Py 5Py
are distinct elements of KU with only one of the pi's being w. Therefore, the

equation (4.2) is equivalent to the equation

M =p,) = (1 +2)/(p = p,), (4.4)

1/ -p) = +2)/( -p,), (4.5)
ot

1/ -p))==-2( -»p,) (4.6)
according as P =, 92 =W or p3 = w, respectively. Now, the equations (4.4) -

(4.6) are, respectively, equivalent to the equations (p - 02)/(93 - 92) ==,
(p
under consideration. The definition of cross-ratio implies that each of the equations
(4.2) holds if and only if (p, Pys P ,Dl) = - X. That is (4.2) holds if and only if
(4.3) holds.

Cases (i) and (ii) complete our proof.

LEMMA 4.3. Let G; € D(K) for i=1,2,3, and let m € K-~ {0} for k=
1,2,00+,9  such that m >0 for k< p(P<q) and o <0 for k> p. Giver
any t» 1 {r<p, anda %t €K, we define

3° Dl)/(D - Dl) =-X, and (p - 92)/(9 - Ol) =~ A, in the respective cases

2

* q q
R ={pe¢ K“|ki1 m /(e = 0) = (kil m /(P =) P ,eeesp €6

X
pﬂdﬂ.”ppecz;pwlﬂ.”pqecﬁ,
and
. 3 3
Ho={pek|Z A/ -p)=(Z A/ -T);p €6},
i=1 i=1
n z : : 3
wit A = > = ’ = « With & g n G,,
17y K b kmrtl K % k=p+1 i i=] *
* *
then ®-hH-vde =@ - - 3 (I
«  i=1 3 1=1
PROOF. If pe (H - {g}) -vu Gi’ then there exist elements pi € Gi
i=1

(i=1,2,3) such that p € Gl u €2 U G3 v {¢} and

Al/(p -+ AZ/(D - Py +A3/(p - 93) = (A + 4+ A3)/(p -z). (4.7)
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Obviously, p # pl, 02, 03, t. If we choose elements p', k =1,2,...,q, such that

pl for k = 1,2,...,r

p'. =&p

K for k = r+l,...,p

2

p, for k = p+l,...,q,

3

then equation (4.7) can be written as

r ' P q q
b /(p = p, )+ L /(P -p'" )+ L /G -p!)=(CLm)/(p-%)
el K S k k=p+lmk k =1
or
g /( ) (g /( )
m/(p -p') = m)/(p - 2C).
k=1 k k k=1 k
This implies that p € (R* - {g}) - u3 G;. Hence
i=1
* *
W - ehH-v e e -h -y e, (4.8)
. — . i
i=1 i=1
* 3
For the reverse containment, if p € (R - {g}) - Gi’ then
i=1

PEG UG, UG {¢} and there exists elements Di (1 <k <q) such that o' € G

1 2 3 k 1
for k<r,p' €6, for r<k<p, pé € G3 for p <k < q, and such that

k 2

q q
Eom /-0 = (L m)/ - 2.
k=1 e k k=1 e

Therefore,
(g )/ ( ) ; /( ) )13) /( ) g /( )
T -p) = m/(p! - p) + m /(p! - p) + m /(p! - p
kel K k=1 € K k=r#1 € K k=pt1 < K
=B, +B, +B (say). (4.9)

1 2 3

Since Gi € D(Kw) and p ¢ Gi for i = 1,2,3, we see from the definition of g.c.r.'s

that ¢p(Gi) is Ko-convex for i = 1,2,3 [5]. 1In view of this and the fact that

¢D(G1) for k = 1,2,...r
l/(Di -p) = ¢p(G2) for k = r+l,...,p
¢p(G3) for k = p+tl,...,q,
we conclude that Bi/Ai € ¢p(Gi) for i = 1,2,3. Therefore, there exist elegents Py € Gi
such that Bi/Ai = 1/(pi - p)s Now, (4.9) implies (since Al + A2 + A3 = kil mk) that
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3 3
z A/ - p,) = (z A/ - 2D,
i=1 i=1
* 3
which says that p € (H - {¢}) - u “G.,. Hence
i=1
* *
®R-th-v3c c@ -whH-vic. (4.10)
i=]1 i i=1 i

Finally (4.8) and (4.10) prove our lemma.

Next, we take up the most general theorem of this paper, which we establish via
application of Theorem 3.1.

THEOREM 4.4. Let M be a fully supportaple subset of V and, for k= 1,2,...,q,
let P € P:k and E(()k)

T, (x,y) for all (x,y) € N and for all k. If ¢(Q;Xl »X) is the algebra-valued
k

Eo(N’Gk) be circular cones in E such that E, (x,y) ¢
k

generalized polar of the product Q(x) (cf. (2.1)-(2.3)) with m > 0 for k <p (p < q)

and o <0 for k> p, then ¢(Q;xl ,X) € M for all linearly independent elements

q E(k) and xeE-(ul Eék)
k=1 ° k=1

TS(xo,yo), where S(xo,yo) is the set as defined in Theorem 3.l.

x,)él of E such that x, € E - n

1 )

PROOF. If £ € V- M, there is a unique nontrivial scalar homomorphism L on
V such that L(§) =0 but L(v) # 0 for all v € M. Now, LPk € Pn (2.4) and it
k

can be easily shown that Zp (x,y) ¢ Ep (x,y) < T, (x,y) for all (x,y) € N and for
k k k

all k. In view of remark 2.l and the discussion immediately preceding it (with the

notations therein), we have
LG (Q5%,,%)) = 2(LQ;%,,%), (4.11)

both sides wusing the same mk’s. Applying Theorem 3.1 to the generalized polar
O(LQ;xl,x) of the product LQ of the polynomials LPk, we see that Q(LQ;xl,x) 0

for all linearly independent elements XX, of E as claimed. Consequently, the

relations (4.11) implies that O(Q;xl,x) # £ for all X,x, as claimed. Finally, the

arbitrary nature of & (in V-M) completes the proof.

q
The following version of Theorem 4.4 for the case when I mk =0 and n q E(k) = ¢
k=1 k=1

is a result exclusively in terms of algebra-valued generalized polars with a vanishing
weight. The proof is immediate as in the case of Theorem 3.2.
THEOREM 4.5. Under the notations and hypotheses of Theorem 4.4 i{f we assume that

q
n 1 E(()k) =9 gud I m =0, then Q(Q;xl,x) e M for all linearly independent
k=1 k=1

q+l

+
elements X,X, of E  such that x€E- v E(k), where E (a*D) - EO(N,G
k=1 o o

q+l)

is the cone as defined in Theorem 3.2.
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Since Theorem 4.4 reduces to Theorem 3.1 on taking V=K and M=K - {o} (c.f.
Remark 4.1), it becomes the most general result of this paper. Besides, it leads to
the following corollary, which combines two earlier results due to the authors [1] and
[2] which includes in it (as a natural consequence) a number of other known results
due to Zaheer [5], [17], Marden (3], Walsh [22], and to Bdcher [4].
COROLLARY 4.6. Let Eo,i = Eo(N’G'i)’ i=1,2,3, be circular cones in E. Under

the notations and hypotheses of Theorem 4eb, if the circular cones
(k) _ .
E ) = E,(N,G ) are given by
(
E for 1 <k<r (r<p)
o,l - =
(k) _
E, Eo.2 for r<k<p (4.12)
\ Eo,3 for p<k<aq,
then O(Q;xl,x) € M for all linearly independent elements X%, of E such that
x €E- ndE x€E-( USE Du T (x v), where(x_,y) e N n L?[x,x ]
1 1=1 o,1 1=1 o,i S'* 0’0"’ 0’7o D Bl
X = Yx o+ &Syo and
3 3
] - - = - . '
$'(x ) = e ek | T A/ -p) = (L AN/ -Y/8); 0 6 (x,y)},
i=] i=1
r P P
with A = , = and A, = m .
170 b ket 3 kepr €

PROOF. If x,x1 are linearly independent elements of E such that xl =4 n3 E

i=]1
3 n
and x £ (1U=1 Eo,i) UTS,(xo,yo), where (xo,yo) is the unique element of N Lz{x,xll

o.1i

(see definition of N) then there exists a unique set of scalars a,B,Y,8 (with
ad - BY # 0) such that x = ax + By, x =Yx + Gyo and

W/ ¢ (26} (a3, U S (xy 7)) (efs 225,

*

where S'(xo,yo) =H forg =Y/§ and G,= Gi(xo,yo) (cf. Lemma 4.3). Note that
*

ad - By # 0 implies that a/B # Y/8§. This implies that a/B ¢ H u {v/8} u

(v 3 G!' (xo,yo)). Therefore,
1= 1
* 3,
a/B & (B - {y/6}) = U~ 6j(x.,y.).
1=1
Since x,6 ¢ 03 E , we see that Y/§ & n 3 G!' (x_,y ), where
1 1=1 o,1 1=1 1 o’’o

N q q
R ={pc¢ 1(w|k>i1 w /(e =p) = (kil m /(P = Y/8); P yeensp €
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€ Gé (xo,yo)} .

L . A .
Gl (X s¥ )5 Py yaeees P e G, (x5¥,)s o1t Py

That is,
a/BtR*u U(U3G'( ))
{y/8} i=1 1 KoYl

*
Consequently, a/B £ R . Since the G of Theorem 4.4 in the present set up are

k

given by

Gi fpr1 < k<r

’

Gk _ G2 for r<k<p (4.13)
G:; fpr p <k < q,
*
we have that R = S(xo,yo), v E‘()k) =03 E,; @ad n q Egk) = a3 E 4 (cf.
k=1 i=1 ’ i=1 i=] ’

(4.12)). Therefore, we see that a/B ¢ S(xo,yo). Consequently, x and x, are
linearly independent elements of E such that X, g n q E(k) and x g U 9 E(k))

k-1 ° k=1
v Ts(xo,yo). By Theorem 4.4, J?(Q;x1 ,X) € M, as was to be proved.

q
If I o # 0, Corollary (4.6) is Theorem 4.3 of a paper due to the authors [2],
1

k=
and if (in addition) V =K and M=K - {o}, it is Theorem 3.1 in the same paper.
q
In case when I m, = 0 and n 3 E , =¢, Corollary 4.6 leads to the following cor-
k=1 =1 >t

ollary, which is again a result due to the authors [1] and which reduces to Theorem
3.1 [1] when specialized for V=K and M= K - {o}. q
COROLLARY 4.7. Under the notations and hypotheses of Corollary 4.6 if L m =0

k=1
and n 3 E,; =9, then 1>(Q;x1 ,x) € M for all linearly independent elements X, %
i=1 ’
of E such that x€ E - U 4 E ,, where E = E (N,G)) is the cone defined by
i=1 o,1 0,4 o 4
]
= = - . 1
6, (x,53,) = {p € K [(p,p3,0,,0)) /A5 Py € G (x Ly )}
r P
for all (x ,y ) €N, with A . = I m gud A= I m
0’’o 1 k=1 k 2 k=r+l ke
PROOF. If X,x, are linearly independent elements of E such that x & U 4 Eo 17
i=1 ’

then there exist a unique element (xo,yo) €N n [2 [x,xI] and a unique set of scalars

a,B8,Y,6 (with a6 - By # 0) such that x = ax + Byo and x =7Yx + Gyo. Then

1

A Al 1] '
a/B & ‘;zl Gi(xo’yo)’ where G“(xo,yo) R, for A AZ/Al and 6 Gi(xo'yo)
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(Lemma 4.2). We divide the proof into the following two cases:

Case (i). a/B # w. 1In this case

a/B ¢ Ry U {w} u(u 3 G;(xo,yo)),

i=1
3 ! 3
and so a/B € (R, - {w}) - U~ G (x_,y ). Since G,(x ,y)=¢, Lemma 4.2
4=1 1 3o 'o jop 1 070

implies that a/f € (H, - {w}) - ;=1 Gi(xo’yo)’ where (since A = AZ/A1 and

I
A + A + A, =0, where A, = m

1 2 3 3 kep+1 k
3 '
H ={oe leiil A/ =0 =050, € Gi(x ,y)}
1
=S (xo,yo) (cf. Corollary (4.6).

Therefore,

a/ ¢ s'(xo,yo) u {w} u ( tij G;(xo,yo))

and (hence) a/B & S'(xo,yo). That is, x € TS’(xo’yo)' Consequently, x and x| are

linearly independent elements of E such that x, £ n3 E .=¢ and x¢ (v 3

17y ol i=1

Y TS,(xo,yo). Finally, Corollary 4.6 says that Q(Q;xl,x) € M. as was to be proved.

Eo,i) v

Case (ii). a/B = w. 1In the case under consideration B =0
and

a/B = w £ R, U (u 3 Gi(xo,yo)). (4.14)

i=1
If £ € V- M, there exists a unique nontrivial scalar homomorphism L on V such that
L(E) =0 but L(v) # 0 for v e M. Since the hypotheses of Theorem 4.4 are
satisfied for the choice of circular cones given by (4.12), we proceed as in the proof
of Theorem 4.4 and again observe that the polynomials LPk (= P;, say) satisfy the
hypotheses oi Theorem 3.1 with the Eik) and the Gk given by (4.12) and (4.13). The
fact that P 1s an a.h.p. of degree n from E to K allows us to write it in

k
the form
* (s k=1,2
Pk (sx + txl) = 11 ( jks - ijt), 3250005qs
Since x 1s not in the set y 3 E = q E(k)

U and since 2, (x ,y) c T, (x ,y )
1=1 0,1 k=1 Pi o’’0" = Gk o’’o

*
for all k, we see that Pk(x) = ;k # 0 for all k. Now, proceeding exactly on

J=1
*
the lines of proof of Theorem 3.1 (except that we replace Pk by Pk and take B =0

ij

all along) and using the same notations, we find that there exist elements

v o= § - . v !
Py € Gk(xo,yo) such that . mk( P Y)/ a Note that all the '8 cannot

vanish simultaneously (since q q E =

E =¢). Now,
k=1 o 1

0,

(k) 3
n
i=1
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q r p q q
L v =68/a L p. + L m p ]+ I mp (since I m = 0)
k=1 ¥ P R RT3 k=ptl € K k=1 K
= (6 .
(§/a) [B1 + B2 + B3], say

1
Since Gi(xo’yo) are ko-convex (4.14), we conclude from (4.13) that

' q
= z
Bi/Ai € Gi(xo’yo)’ where A m

3 Now, there must exist elements
k=p+1
)

K

’ Al
Py E Gi(xo’yo) such that Bi = Ai Py for i =1,2,3, and (hence)

q Al 1 1 L}
kil Ve = (8/a) [Al(p1 - 93) + Az(pz - 93)], (4.15)
because A1 + A2 + A3 = 0. From Remark 2.1 and equation (3.4) [5] we have
3 q
L(¢(Q;x, ,%)) = ¢(LQ;%x,,x) = - (L v ). IT P (x)#0, (4.16)
1 1 k=1 k k=1 k

* *
where LQ is the product of a.h.p.'s Pk' Since Pk(x) # 0 for all k, (4.15) would
imply that (since § # 0)

1 1 \J 1
APy =p3) + AP, - py) = 0.
1 1 1]
Note that pl, Pys 93 must be distinct elements of K (since Al’ A2 >0,n
i=1
1 Al 1 1 1 1 Al 1

Gi(xo’yo) =¢ and (4.14) holds). Therefore, (w, Pys Pys pl) = (p3 - pl)/(p3 -P, =
- AZ/AI =- X, and so a/B = w € Ry This contradicts equation (4.14). Consequently,

(4.16) holds and Q(Q;xl,x) # & for any § € V - M. That is, 0(Q;x1,x) € M, as was
to be proved.

Finally, cases (i) and (ii) complete the proof.

The following Corollaries 4.8 and 4.9 can be proved directly from Theorem 4.4,
via applications of a suitably modified form of Lemmas 4.2 and 4.3, exactly in the
manner in which Corollaries 4.6 and 4.7 have been derived with the help of Lemmas 4.2
and 4.3. But it would neither be necessary nor worthwhile to do so. This is because
it has already been proved in earlier papers due to the authors Corollary 4.5 [1] and
Corollary 4.4 [2], that Corollary 4.8 (resp. Corollary 4.9) follows from Corollary 4.6
(resp. Corollary 4.7). We, therefore, state these without proof.

Al
COROLLARY 4.8 [17].LetE0 i = Eo(N’Gi)’ i=1,2, be eircular cones in E. Under
’

q
the notations and hypotheses of Theorem 4.4, if L m * 0 and if the circular cones
k=1

k) _ .
Eg ) = Eo(N’Gk) are given by
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E k=1,2,.e.,p (p < q)

E k ptl,...,q,

then 2(Q;x,,x) € M for all linearly independent elements  *sX| of E such that

x ¢ E

1 n Eo’2 and X § Eo,l U ho’z v TS*(xo’yo)’ where (Xo,yo)

o,1

€N n L2[x,xl], X, =YX+ ﬁxo and

1

* ' [
$(x,y) = {p e K [, ¥/8, 0 ,0,) == Aa/a 50, e 6ix,y)},
' P re q
with A = L o and A = L m .
k=1 k=p+1

COROLLARY 4.9 [17].q Under tne same notations and hypotheses as in Corollary 4.8,
= ¢, we have that
of E such that

except that this time kEI m, = 0 and Eo,l n Eo,2

#(Q;xl,x) € M for all linearly independent elements X%,
x € E - Eo,l u Eo,Z'

For V- K and M= K - {o}, the above Corollaries 4.8 and 4.9 are known results
due to Zaheer [5].

At the end it emerges that Theorem 4.4 of this paper happens to be the most
general result known thus far on (algebra-valued) generalized polars, whether having a
vanishing or a nonvanishing weight, and it includes in it all the corresponding
results that have been established earlier in the papers due to Marden [11], Zaheer
[5], and to the authors [1] and [2]. It also includes improved versions of some well-
known classical results, such as: Walsh's two-circle theorems [5], Marden's general
theorem [7] expressed in Corollary 3.3, and Bocher's theorem [5]. To sum up: apart
from the fact that all the previously known results [3], [5], [2], have been jacketted
into Theorem 4.4, the present study answers in full generality the type of problem on
generalized polar pursued since 1971, and, it unifies the hitherto unnecessary and
separate treatments traditionally meted out to the cases of the vanishing and the
nonvanishing weight. With Theorem 4.4 in view, it may be pointed out there is no
scope left for further studies in this subject area, except possibly when different
new concepts are developed on some other lines.
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