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ABSTRACT. We define an order structure on a nonseparated n-manifold. Here, a
nonseparated manifold denotes any topological space that is locally Euclidean and
has a countable basis; the usual Hausdorff separation property is not required. Our
result is that an ordered nonseparated n-manifold X can be realized as an ordered
orbit space of a completely unstable continuous flow ¢ on a Hausdorff (n + 1)-
manifold E.
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1.  INTRODUCTION

Nonseparated manifolds arise in a very natural way in the study of ordinary
differential equations and completely unstable flows. A topological space that is
non-Hausdorff, locally Euclidean and has a countable basis is referred to as a
nonseparated manifold. A flow ¢ on a manifold E is said to be complete]y unstable
if it has no nonwandering points. Such systems occur very naturally. For example,
on R 2 any continuous flow without equilibria is completely unstable, and the
restriction of any flow to the complement of its set of nonwandering points is
completely unstable. A1l open manifolds admit completely unstable flows.

Let ¢ : E x m,l + E be a completely unstable c® flow on an (n + 1)-manifold E.
The orbit space of ¢ is the set E/ ¢ of all orbits of ¢ with the quotient topology
(the finest topology in which the natural projection = : E » E/¢ is continuous). If
¢ admits local cross-sections at every point of E that are n-Euclidean, we say ¢ is
locally trivial. It is known that if either E and ¢ are c1 or n s 2, then ¢ is
locally trivial ([1],[2]). Moreover, if ¢ is locally trivial, completely unstable
c® flow then E/¢ is a nonseparated n-manifold. The ordered orbit space of ¢ is
obtained from this non-separated manifold by imposing an additional structure that
indicates the order in which the cross-sections of ¢ that correspond to the charts
of E/¢ are traversed by orbits of ¢ (precise definitions are given in [3]). We then
have the following classification theorem which shows that completely unstable flows
on manifolds can be classified completely in terms of their associated ordered orbit
spaces (Theorem 3.1, [3]).
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CLASSIFICATION THEOREM. If ¢ and ¢' are locally trivial, completely unstable
c® flows on m-manifolds M and M', respectively, then (M,4) and (M',s') are topologi-
cally equivalent if and only if M/¢ is order isomorphic to M'/¢'.

Our interest here is in the question of realization: What nonseparated mani-
folds can be realized as the ordered orbit space of a completely unstable c® flow on
some Hausdorff manifold? Some restriction on the nonseparated manifold is undoub-
tedly necessary. However, it appears to be a difficult problem to characterize the
realizable ones. We present a preliminary result in this direction in the present
paper. We first define a restricted class of nicely ordered nonseparated manifolds.
We then prove that these manifolds are all realizable.

REALIZATION THEOREM. If X is nicely ordered, nonseparated n-manifold then X
can be realized as the ordered orbit space of a completely unstable continuous flow
(E,$), where E is a Hausdorff (n + 1)-manifold.

Essentially the same result, in the case X is a one-dimensional simply connec-
ted variety and E =R 2 is stated in Haefliger and Reeb [4]. It is also stated in
Neumann [3] for one-dimensional manifold X.

In §2 below, we give most of the definitions and notation required in the proof
of the realization theorem; the proof itself occupies §3 - §5. Finally, in §6 we
prove the following corollary.

COROLLARY. Let X and E be as in the realization theorem. If nn(X) = 0, then
™ (E) = 0 for n 2 1. Moreover, if X is a gne-dimensiona] simply connected nonsepar-
ated manifold, then E is homeomorphic to R “.

2.  PRELIMINARIES.

DEFINITIONS AND NOTATION. Throughout what follows, E denotes a Hausdorff
(n + 1)-manifold, ¢ : E x ntl + E denotes a continuous flow on E, and X denotes a
nonseparated n-manifold with a countable basis (Vi, Wi) where each Vi is homeo-
morphic to D", the compact unit n-disk. A topological space is a nonseparated
manifold if it is locally Euclidean and has a countable basis, the usual Hausdorff
separation axiom is not assumed. For any set S CE, TC 1R1, S « T = {¢(x,t)]|xeS,
teT}; x-T = {x}-T; and for xeE and teIRl, Xt = ¢t(x) = ¢(x, t). The orbit of xeE
is the set y(x) = x -'ml. The orbit space E/¢ is the set of all orbits of ¢ with
the quotient topology. Also, throughout what follows, for any set A contained in a

topological space, ; and K will denote the interior and the closure of A respec-
tively.

A set UCE is said to be wandering (with respect to ¢) if there exists
to e-ml such that U.t N U = p for each t with |t|2 t,- A point xeE is nonwandfring
if it has no wandering neighborhood. Equivalently, xeE is nonwandering if xed (x),
here J+(x) denotes the set of limits of sequences {xn- tn}, where {x,} converges to
x and t, tends to . The (closed ¢ - invariant) set of all nonwandering points of ¢
is denoted as 2(¢). A flow ¢ is said to be completely unstable if a(¢) = p. A
cross-section of ¢ is a set SS E for which the mapping h:S x ml + E defined by

h(s,t) = s.t is a homeomorphism of S x ]Rl onto a subset of E.
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3.  STATEMENT OF THE REALIZATION THEOREM.

In order to state our main result, we first need to define the following order
structure.

DEFINITION 3.1. Let X be a nonseparated n-manifold with a countable atlas

¥. > where each Vi is homeomorphic to D" (the compact unit n-disk), and

vi’ i

]
{Vi}izl forms an open cover for X. We say that X is nicely ordered if there exists

a collection of continuous functions hijzvirw Vj + {-1,1} satisfying?
(a) hij(x) = 'hji(x) for every xeVo N Vj;

(b) If xevirﬁ erﬁ Vi with hij(x) = +1(-1) and hjk(x) = +1(-1), then
hik(x) = +1(-1) ;

(c) 1f (x"} is a sequence in Vifq erﬁ Vi (i<j<k) converging to
eri, and xth, then xtvk.

The order structure defined as above is a generalization of the order structure
on a nonseparated 1-manifold, as given by Neumann in [5]. However, the property (c)
of the order structure as above is slightly more restrictive than the property (3)
of the order structure given by Neumann (see §3.5 below), and thus the phrase
"nicely ordered" is used.

Our main result is the following Realization Theorem.

REALIZATION THEOREM. 3.2. If X is a nicely ordered, nonseparated n-manifold,
then X can be realized as the ordered orbit space of a completely unstable continu-
ous flow (E,¢), where E is a Hausdorff (n + 1) - manifold.

REMARKS  3.3. (a) This result in the case X is a one-dimensional simply
connected variety and E =IR2 is stated in Haefliger and Reeb [4]. It is also stated
in Neumann [3] for one-dimensional manifold X.

(B) Properties (a) and (b) of the order structure defined in 3.1 above will be
used implicitly throughout the proof of the realization theorem.

OUTLINE 3.4. We shall prove the realization theorem by induction on the
number of charts in X in the following two steps.

(1) We first show that X can be realized as a base space of a bundle

B = < E,p,X >, where E is a Hausdorff (n + 1) - manifold.
(2) We then define a flow ¢ on E, show that it is completely unstable and
finally show that X is the orbit space of the dynamical system (E,¢).
The first step, that is to show the existence of the bundle B= < E,p,X >, is the
major step in the proof of the realization theorem.

DISCUSSION 3.5. We would Tike to point out that the direct generalization of
the order structure given by Neumann for nonseparated l-manifold in [5] would be:
(a) and (b) same as in the definition 3.1 above and replace (c) by a less restric-
tive condition (c') as follows:
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(¢') 1If (x") is a sequence in Vi N VJ. NV such that
(a) hij(xn) =1 and hjk(x") = 1 for each n, and

(8) x"» xeV; with xgVy, then x¢ V.

Moreover, if ¢ is a completely unstable °

flow on the (n + 1) - manifold E and
admits cross-sections that are locally Euclidean, then E/¢ can be ordered in this

sense: choose a covering system {Si}121 of cross-sections for the dynamical system
[o}
(E,¢) (see 4.2, 4.3 of [3]). Set Vi = p(Si) for each i. Then wi}iZl forms an open

cover of E/¢. Let fij: Vin V. > R 1 be defined as in the proof of the classifi-
cation theorem (Theorem 3.1, [3]). Set hij(x) = sgn(fij(x)), xevin Vj' Using the
properties of fij (see [3]), it is now immediate that hij satisfy the properties
(a), (b) and (c') above.
4, EXISTENCE OF A BUNDLE B = < E, p, X >.

In the setting of the existence theorem (Theorem 3.2 of [6]), to show the
existence of a bundle B=<E, p, X >, we seek the coordinate transformations {gij} in

the space X, with the structure group the group t of all translations of ]Rl. In

particular, we seek the maps:
95t Vin VJ. + 1 satisfying:

(a) gij(x) ogJ.k(x) = gik(x) for each x € Vs N ij Vi (compatibility
condition);

(b) If (x"} is a sequence in Viﬂ V. such that {x"} converges to both X; € Vi
and xJ. € VJ. with X; # xJ., and hij(x") = +1(-1) for all n, then

gij(x")(t) >+ o (-=) as n > = (for every t enl).
We define 9j in terms of the translations fij as follows:

g..: V.n V. + 1
e 1,1
X -»gl.j(x): R > R~ such that
gij(x)(t) =t + fij(x); X € Vi N VJ. and t ¢ ]Rl. (*)

Where

. 1
fij' Viﬁ VJ. + IR

are to be defined so as to satisfy:
(A) fij(x) + fjk(x) = fik(x) for each x € Viﬂ Vjﬁ Vk; and

(B) If x"} is a sequence in X such that M converges to both
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o o . ny _
X; € Vi and X € Vj with x; # X5 and hij(x ) = +1(-1) for all n, then

n
f1J(x ) » 4+ o(-=) as n > =,

If we assume that fij satisfying (A) and (B) exist, then g . defined by (*) trivi-

ally satisfy (b). For (a), fix x e V;n V;nV, and t e ;Rl.
Then using (A) for f. jo e have

975(x) 0 95 (2] = gyt + £, () =t + F5, (x) + F5(x) = t+ Fy(x) =
95, (x)(t) as desired.

Thus, to show the existence of the coordinate transformations {gij}’ we need to
show the existence of the translations {fij} satisfying (A) and (B) above. We show
the existence of {fi‘} by induction on the number of charts in X. Note that since
each chart is Hausdorff and X is not, X can not have a single chart.

REMARK 4.1. One should note that the existence theorem (Theorem 3.2 of [6])
not only gives the existence of a bundle B = < E, p, X > but also its uniqueness up
to bundle equivalence.

NOTATION 4.2. In What follows, B1 denotes the set of all non-Hausdorff points
of X and V; (1 #3) denotes the set of all those points x; € B; N V; such that there
exists a sequence x" in V N VJ with {x"} converging to X; and also to another
point xJ e V. with X; # xJ Note that ViJ is the set of all those non-Hausdorff
points in Vi that can not be separated from some point in Vj.

PROPOSITION 4.3 For any i # j, the set vij is a closed subset of the metric

space Vi.

PROOF: Let {yk} be a sequence in vij such that {yk} converges to y € Vi. We

want to show that y ¢ Vij' Without loss of generality, let Y €5 1 (y) for each k,
ok

where B 1 (y) is an open ball in the metric space v, Moreover, for each k, let

K

{XE} be a sequence in Vi(W Vj such that {x:} converges to M and also to another
point y& € Vj, with Yy # y&. Since Vj is compact, the sequence {yi} has a

i

convergent subsequence {yl'( }>y' e Vj. As above, let y"( EBi (y') for each &,
L 9 =
22
wheregi (y') is an open ball in Vj. By induction, there exists Nm > Nm-l in z¥ such that
DY)
2

N
ka € B n Bl (y'). Now the sequence {xﬁm} is in V,NV, and obviously
m - = m J

2m 2"
converges to both y and y'. Moreover, it can be easily seen that y # y'. Hence
Yy e V1j as desired.
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EXISTENCE OF fij FOR TWO CHARTS 4.4. If X has only two charts, say V1 and V2,

then {fij} (1 < i, j <2) satisfying (A) and (B) above exist for these two charts.
Let X' = (V1 N VZ)” V12 (disjoint union). Note that X' is a metric subspace
of the metric space Vl. Define f': X' » [0,1] by

1
f'(x) = T dx, Vo) b X ¢ X'.
1+ d(x, v12)
Then f' is a continuous function, and since V12 is a closed set (§4.3), f'(x) =1 if
and only if x e Vy,. Define fi,: X' » [0,=] by fiz(x) = tan-’z'- (£'(x)). Then flp1s

continuous and fiz (x) = «» if and only if x ¢ V12. Now set f12 = fiz | Vln Vz,
where f1,|V, A V, indicates the restriction of the function fip on the set vV, N V,.

Finally, the set f12, f?_1 = 'f12’ and fii = 0(i = 1,2) is the desired set of
fij (1 <i, j <2), satisfying (A) and (B) above. This completes the construction
of fij in the case X has only two charts.

REMARK 4.5. In the construction of f12 above, observe that flz(x) > 0 for
every X g v1 i V2. In the rest of the proof, we would construct fij so as to
satisfy (A) and (B) above and also the following added property:

(C) Ifj > i, then fij (x) > 0 for every x ¢ V]. n Vj‘

INDUCTION STEP 4.6. Suppose that we can define {fij} (1<i, jsn) satisfying
(A), (B), and (C)above in the case X has n-charts say Vl, V2, V3, e s Vn, we show
that {fij} satisfying (A), (B), and (C) above can be defined in the case X has
(n + 1) - charts Vl, VZ, cee s Vn, Vn+1.
In order to show the existence of {fij} in the case X has (n + 1) - charts, we first
need to show the existence of {fij} in the case X has only three charts, which in
turn requires the following lemma:

LEMMA 4.7. Let A and B be closed subsets of a metric space Y. If g: A+
[0,1] is a continuous map such that g(x) = 1 if and only if x ¢ A\ B, then g can be
extended to a continuous map g: Y » [0, 1] such that g(x) = 1 if and only if x ¢ B.

PROOF: Define 9a U B* AUB » [0,1] by
g(x) if x ¢ A;

gAUB(X) =
1 if x ¢ B.

It is obvious that 90 UB is a well-defined map that extends g. Also, it is contin-
uous by glueing lemma ([7], page 50). Moreover, 9Inu B(x) =1 if and only if x ¢ B.

In order to extend 9n U B to the whole of Y, we observe that A\ B is a closed
subspace of the metric space Y. Therefore, there exists a continuous function
u:Y » [0,1] such that u(x) =1 if and only if x ¢ AU B. Moreover, by Tietze
Extension Theorem, there exists a continuous extension g':Y » [0,1] of 920U B such
that g'(x) = 1 if x ¢ B.



NONSEPARATED MANIFOLDS AND COMPLETELY UNSTABLE FLOWS 751

Finally, define g: Y » [0,1] by g(x) = u(x) + g'(x) for x e Y. It can be
easily seen that g is the desired map. This completes the proof of the lemma.

EXISTENCE OF fij FOR THREE CHARTS 4.8. If X has only three charts, say Vl,
V2, and V3, then {fij} (19, j<3) satisfying (A), (B) and (C) above can be defined
for these three charts.

Let fizz (vlrw V2) uV12 > [0, »] be the function as obtained in the case of
two charts (cf. §4.4). Define fé3: (V2r1V3)lJ V23 » [0, =] analogous to fi2' Here,
V23 is a set as defined in §4.2.

In order to define f13: (Vlrﬁ V3)LJ V13 > [0, =], let A123 = Vlrﬁ Vzmv3 and

define V121 to be the set of all those points X1 € Bl(\ Vl, such that there exists a

sequence {xn} in A123 with (x"} converging to Xq and also to another point Xq in V3
with X1 # X35 (B1 is the set as defined in §4.2 above). Observe that V123§; V13.
We claim:

THEOREM 4.9. If X1 € V123 then either Xq € V12 or x; e V23.

PROOF: If Xq € V123 then there exists a sequence "} in A123 such that {x"}
converges to Xq and also to another point X3 in V3 with Xq # X3. Since V2 is
compact, (x"} has a convergent subsequence {xk} > Xy € Vz. If Xy = Xg # X35 then X4
€ V23, otherwise X| € V12'

We now define f13: A123L) Vl?_3 + [0, =] by

f13(x) = Flp0) + F35(x)3 x e AjpgU Vi3 (4.2)

Then fi3 is a well-defined continuous map. Since both fiz and fé3 are finite on
A123, it follows from 4.9 above that fi3(x) = = if and only if x ¢ V123. We want to
extend f;, continuously to f,: (V1 N v3) U V3 [0, =] such that fi3(x) = » if and
only if x ¢ V13. (Note that the extension of fi3 is also denoted as fi3).
In the setting of the lemma 4.7 above, we have Y = (V1r1 V3)lJ V13, A= A123
LJV123 and B = V13. Assuming A to be a closed subset (proved below) of Y, define

g: A » [0,1] by g(x) = 2 arc tan (fi3(x)) where fi3 is defined by (4.2) above. Let

T
g: Y » [0,1] be an extension of g as obtained in the lemma 4.7. Define fi3: Y*[O,

=] by fj; = tan % (g(x)). Note that fi3(x) =« if and only if x ¢ B = V;5. To com-

plete the definition of fi3, we still need to show:
THEOREM 4.10 The set A = A123lJ V123 is a closed subset of Y = (Vlr\V3)u V13.

PROOF: As in proposition 4.3, it can be seen that V123 is a closed subset of
Y. Thus, to complete the proof, it suffices to show that the closure of A123 inyY
is contained in A.

Let {x"} be a sequence in A123 such that {x"} > X o€ Y. Since Y =
(V1 n V3) U Vi3 (disjoint union), either xpeVin V3 or x; e Vi3- Let us first
consider the case x| € Vlrw V3. Since VZ is compact, {x '} has a convergent subse-
quence {xk} > Xy € V2’ We claim that Xy € V1 and thus Xo = Xq. If not, then X, £
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VZ’ Thus by property (c) of the definition of order structure, we have Xy q V3, a
contradiction. Hence, in this case, Xq ¢ A123

If Xq € V13, then Xq 3 V Also, svnce V3 is compact, therefore the sequence
x"} admlts a convergent subsequence {x } - X3 € \l3 Hence X) € V123 (_:_A, as
desired.

Finally, f13 = fi3lvlrmv3, f12 = fizlv1 N V2’ f23 = fé3lv2 V3,
fji = 'fi'(l <i, j <£3)and foi = O(i = 1,2,3) is the desired set of {f; } satisfy-
ing (A), (B) and (C) above. Here, [V n V denotes the restr1ct1on of f'J on
Vi n Vj(l < i, j < 3). This comp]etes the construct1on of f in the case X has
three charts.

We now return to our induction step. We want to define {fij} (1< i, j =< n+l)
satisfying (A), (B) and (C) in the case X has (n + 1) charts Vl, V2, .o Vn+1,
knowing that {fij} (1 < i, j < n) satisfying (A), (B) and (C) have already been
defined in the case X has n charts Vl, V2, er s Vn. For convenience sake, we will
use the following notation in the rest of the proof.

NOTATION 4.11. Any extension of f%j will be denoted as f%j. For any i, j and
k, Aijk denotes the set Vi n Vj(j Vk’ and vijk denotes the set of all points X; in
Bi(ﬁ Vi (B1 is the set of all non-Hausdorff points in X) such that there exists a

sequence (x"} in Aijk with {x"} converging to X; and also to another point Xy in Vk
with X; # Xy Moreover, for any i # j, A denotes the set V N V..

REMARK 4.12. For any i<j<k, the set A1Jk\J V. jk is a c1osed set in Ay U Vi
(cf. §4.10) and it would be denoted as B ik This remark would be used implicitly
throughout what follows.

We now start defining f i for (n + 1) charts. Define fl .. A UV

» [0,o] as in the case of two charts (cf. §4.4). Next, define fn 1 n+1’ Bn-l n ntl
> [0) °°] by

Fraet ne1(X) = Frog n 00+ f g (s x e By 0y (4.3)

as in § 4.9 for three charts. Here, f! has been defined at the induction step.

n-1n
Using lemma 4.7, extend fn-l n+1 tO fn 1 n+1’ An 1 n+1\J Vn 1041 [0,~] as was

done in the case of three charts. We next define the function fn 2 n+1 35 follows.
Define
frz 1) = Frop qO) + L (05 x e B 5 pyys and (4.4)
Fo2 nen(¥) = Frg a1 00+ Foy (s e B e (4.5)

where f!' and f!' have been defined at the induction step and f!'

n-2 n n-2 n-1 n-1 n+l is
obtained above. Using the induction hypothesis and (4.3) above, it can be easily
seen that fn 2 n+l is well defined, that is, fé_z n+l defined by (4.4) coincides
with fn 2 n+l defined by (4.5) on the intersection (Bn_2 n n+1(\ Bn_2 n-1 n+l)'

Finally, using lemma 4.7 with Y = A  » L \JV > 15 A=8B 5 1 141V Boo2 na1 n+l,
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and B = V. o 4q1s extend o o 0 t0 fl o i1t Ao nel YVao2 ner * [0s=] as was
done in the case of three charts.

Continuing this process, we obtain f 4 » and f, induc-

nt1* Tn-g ne1e oo 2 n+l

tively. Finally, define f1 n+1 35 follows:

fi n+l - fi n * fﬁ n+l on Bl n n+l?
1 = 1 1
i " finar ¥ fer e O By oy e
flm1 = fi3* 3 on By pyp» and
L} - 1 1]
o ®f2* f2 on B1o nere
where f% n+1 (i = 2,3, ... ,n) are the functions obtained above and fij (j = 2,3,

...sN) are the functions that have been defined at the induction step. Using the
induction hypothesis and the definition of the functions f; n+l (2<i<n), it can be
seen that fi n+1 is well defined. Finally, using lemma 4.7 with Y = A1 n+1UV1 n+l?

n
A= p(Bry pyy) and B = Vy s extend £ 1y 0 F] 1y 5 AL e UV ey 2L0se]

as was done in the case of three charts.

We now let fij = f;jlvirmvj, fji = -fij and f,, = 0 for i, j=1,2, ... , n+l.
We claim that the set {fij}(l <i, j £n + 1) so obtained is the desired set of
functions satisfying (A), (B) and (C). From the construction of {fij} it is obvious
that the functions {f..} satisfy both (B) and (C). For (A), we need to show that
fij(x) + fjk(x) = fik(x) for each x e V,N Vj NV, and for any i, j and k where
1<i, j, k <n + 1, 1In view of induction hypothesis, we only need to prove it in
the case when one of the i, j or k is n + 1.

If i =n+ 1, we need to show fn+1 j(x) + f.k(x) = fn+1 k(x). If k > j, then
foel j(x) + fjk(x) = -fj n+1(x) + fjk(x) = '(fjk(x) +fy n+1 (x)) + fjk(x) = 'fjk(x)
- o (x) + fjk(x) = fol k(x) as desired. If j > k, then fn+1 J.(x) + fsk(x) =
'fj n+1(x) - fkj(x) = '(fkj(x) + f:j "+1(x)) = -f n+1(x) = foul k(x) as desired.
The cases when j or k equals (n + 1) are analogous.

This completes the induction step and hence the construction of {fij} for i,
j=z1.

Hence, by the existence theorem (Theorem 3.2, [6]), we get a bundle

B = <E,p,X> with the base space X and the coordinate transformations {gij}‘ Also,
any two such bundles are equivalent. Moreover, since X is an n-manifold, E is an
(n + 1) - manifold. We finally show that

THEOREM 4.13 E is a Hausdorff space

A

0
PROOF: If not, let e and e' be two nonseparated points in E. We have {Vk}kzl

covers X, and since for each k there exists a homeomorphism ?k: Vk X R 1, p'l(Vk),
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([6], page 7), each p'l(Vk) is Hausdorff. Consequently, there exists j > i, such
that e ¢ p'l(Vi) and e' ¢ p'l(vj) with p'l(vi)rﬁ p'l(Vj) # @. Moreover, there

exist x ¢ Vl’ X' e Vjand t, t' ¢ ml, such that wi(x, t) = e and Wj(X',t') =e', Let

oY and {Vg} be neighborhood systems at e and e', respectively, with V?Q;

T sl nx1

0

o
Vi) and Vg C p'l(Vj) for all n. Since e and e' are nonseparated points, there-

fore, for each n, there exists Yy € V? F\V?. Let x, = p(yn) € Vir\ Vj for each n.
Then there exists t, e‘Rl such that Yo = wi(xn,tn) = wj(xn,gji(xn)(tn)) for each n,
where gij are the coordinate transformations as constructed above.

Since ¥, converges to both e = q%(x, t) and e' = wa(x',t‘) and both ¥ and vj
are homeomorphisms, it can be easily seen that X, converges to both x and x';
tn > t; and gji(xn)(tn) > t' as n » =  Since t, > t, therefore there exists

t0 € m; such that tn < to for all n. Consequently

p7H(

g..(x )(t ) = gji(xn)(to) for all n.

Jjit'n’'"n
But from our construction of g4 We have that for any t e:ml, g.i(xn)(t) > =0 as N
+ o (because j > i). Thus, g.i(xn)(to) > -o and consequently gji(xn)(tn) > - as
n + », Also, gji(xn)(tn) > t' (finite); a contradiction. Hence, E is Hausdorff.
This completes the proof of Step 1.
5. X AS AN ORDERED ORBIT SPACE.

We now show that we can define a completely unstable continuous flow ¢ on E and
that X can be realized as an ordered orbit space of the dynamical system (E, ¢),
where E is the Hausdorff manifold obtained in § 4 above.

To define a flow ¢: E x EG > E. Fix (q, s) € E x IJ. Since 'vj:Vj X m} -

p'l(vj) is a homeomorphism for each j and {Vj} cover X; therefore, there exists
j=1

some k > 1 with x ¢ Gkand te ng such that q = Wk(x, t). Define

¢(q, s) = wk(x, t+s). (5.1)
We first show that ¢ is well defined; that is, if q also equals Wj(x',t') for some
J#k, x' e Vj and t' ¢ 13, then wk(x, t+s)= wj(x', t' +s).

Since wk(x, t) =q=v¥.(x',t') = Wk(x', gkj(x')(t')) and ¥y is a homeomorphism;
therefore, x = x' and gkj(x')(t') = t, and hence

wj(x'.t' +s) = wk(x',gkj(X')(t' +s)) = vk(X',gkj(X')(t') +s) =y (x,t +s)
as desired.

We next show that ¢ is a continuous flow. It is obvious that ¢ is a continuous
function. Moreover, ¢ satisfies the group law for ¢(q,0) = wk(x,t +0) = q; and
0(0(2,51)585) = o( (xst + 515 55) = ¥ (x, t+ 59 +55) = 0(x, 59 +5,).

We finally show that ¢ is completely unstable and that X is the orbit space of
the dynamical system (E, ¢). To show that ¢ is completely unstable, fix q ¢ E. We
want to show that q admits a wandering neighborhood. Let q = wk(x, to) for some x
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€ Vk and t, e R - Fix € > 0 and let wj = wk(vk, (t - e, to + €)). Then wj is

0
the required wandering neighborhood of q as (wj s t)n wj =@ for all t such that
[t| > 2e. In order to show that X is an orbit space of (E, ¢), fix q ¢ E. If
q = ?k(x, t) for some x € Vk and t € EJ, then for any s ¢ Rl, we have ¢(q,s) = Wk(x,
t +s). Thus, p(e(g, s)) = p(¥ (x, t +s)) = (po¥, )(x, t +s) = x.

Moreover, from the construction of the bundle B =< E, p, X > 1in the existence
theorem (Theorem 3.2, [6]), it can be seen that the topology of X as a base space is
equivalent to the quotient topology. Thus, X is the desired orbit space of the
dynamical system (E, ¢).

As we have mentioned in the introduction, an ordered orbit space of ¢ can now
be obtained from the orbit space X by imposing an additional structure that indi-
cates the order in which the cross-sections of ¢ that correspond to the charts of X,
are traversed by orbits of ¢ (precise definition of the order structure is given in
(3.

Hence, X can be realized as an ordered orbit space of a completely unstable c®
flow on the Hausdorff (n + 1) -manifold E. This completes the proof of the realiza-
ticn theorem.

6.  COROLLARY.

Let X and E be as in the realization theorem. If nn(X) = 0, then "n(E) =0 for

n 1. Moreover, if X is one-dimensional simply connected nonseparated manifold,

then E is homeomorphic tole.

PROOF. We consider the exact homotopy sequence
i P A
>

1w . A P
« e o >0 (]R) > "n(E) > T[n(X)

1

*
>

1,0
n L “Z(X) > "l(m )+ ﬂl(E)
"l(x) + « + « of the bundle B = < E, p, X >. Since for each n 2 1, ™ (X) =0 and
nnké)=0, it follows that nn(E) = 0 for each nx= 1. In particular, E is simply

Thop (@

connected.

Now from the isomorphism theorem of Hurewicz ([6], page 91), we know that the
first non-zero homology group and the first non-zero homotopy group have the same
dimension and are isomorphic. Thus, we conclude that Hn(E) = 0 for each n > 1, that
is, E is acyclic.

If X is a one-dimensional simply connected nonseparated manifold, then from the
proof of the Realization Theorem, E is a two-dimensional Hausdorff manifold.
Moreover, from above E is simply connected. Therefore, E is homeomorphic to S2 or

]Rz. But S2 is not acyclic and hence E is homeomorphic to n{z.
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