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ABSTRACT. Let o denote the class of functions w(z), w(o) = o, [w(z)| < 1 analytic
in the unit disc U = {z: |z| < 1}. For arbitrary fixed numbers A, B, -1< A< 1, -1
<B<1land o< a < p, denote by P(A, B, p, a) the class of functions P(z) = p +

n

b bn 2" analytic in U such that P(z) ¢ P(A, B, p, a) if and only if P(z)
n=1

p+[pB+ (?-E)Bé?;%)] w(z) sWeQ ,2ze U. Moreover, let S(A, B, p, a) denote

o

a_ 2" analytic in U and satisfying the

the class of functions f(z) = zP + n

b
n=p+l1
z2f'(z

condition that f(z) ¢ S(A, B, p, o) if and only if 3

= P(z) for some P(z) ¢
P(A, B, p, ) and all z in U.
: s f(z) s
In this paper we determine the bounds for | f(z) | and |arg 7 | in S(A, B,
P, a), we investigate the coefficient estimates for functions of the class S(A, B,
p, «) and we study some properties of the class P(A, B, p, a).

KEY WORDS AND PHRASES. p- Valent, analytic, bounds, starlike functions of order a.
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1. INTRODUCTION.
Let Ap (p a fixed integer greater than zero) denote the class of functions

flz) =2+ : akzk which are analytic in U = {z : |z| <1}. We use 2 to denote
k=p+1

the class of bounded analytic functions w(z) in U satisfies the conditions w(o) = o

and | w(z) | < | z | for ze U.
Let P(A, B)(-1 < B < A< 1) denote the class of functions having the form
P(z) =1+ 1 b 2" (1.1)
1 n=l M

which are analytic in U and such that P1(z) € P(A, B) if and only if

_ 1+ Aw(z
Pl(Z) = 1_+B—W§E-} s We Q, z¢ U, (1.2)

The class P(A, B) was introduced by Janowski [1].
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For -1 < B< A< 1 and o< a < p, denote by P(A, B, p, a) the class of
functions

O S -
P(z) =p + kEI ¢ Z which are analytic in U and which satisfy that P(z) ¢ P(A, B,

P, a) if and only if
P(z) = (p - a) Pl(z) +a , Pl(z) e P(A, B). (1.3)

Using (1.2) in (1.3), one can show that P(z) ¢ P(A, B, P, a) if and only if
- _p+[pB+ (A
P(z) 1

+-BBV)’§]ZJ)- wla(z) g (1.4)

It was shown in [1] that

Pl(z) ¢ P(A, B) if and only if

_(1+A) p(z) +1-A

P(2) = T8y ply 71 -8 (1.5)
for some p(z) ¢ P(1, -1) = P (the class of functions of form (1.1) which are
analytic in U and have a positive real part in U). Thus, from (1.3) and (1.5), we

have
P(z) ¢ P(A, B, p, «) if and only if

- +pB+(A-B) (p-a z)+[p-pB-(A-B)(p-a
P(z) = 1+B)p(z) + I-

» p(z) € P. (1.6)
Moreover, let S(A, B, p, a) denote the class of functions f(z) e Ap which
satisfy

f! _ (1.7)

for some P(z) in P(A, B, p, a) and all z in u.

We note that S(A, B, 1, o) = S*(A, B), is the class of functions fi(z) € A
which satisfy

zf'l(z)

—?;TET— = Pl(z), Pl e P(A, B).
The class S*(A, B) was introduced by Janowski [1]. Also, S(1, -1, p, a) = Sa(p), is
the class of p-valent starlike functions of order a, o< a <p, investigated by
Goluzine [2].

From (1.3), (1.7) and (1.8), it is easy to show that f ¢ S(A, B, p, a) if and

only if for ze U

(1.8)

fi(2)_ (p-a)

flz) = 2P [ —1 . f] e S*(A, B). (1.9)

2. THE ESTIMATION OF | f(z)| AND Iarg £§£l| FOR THE CLASS S(A, B, p, a).
LEMMA 1. Let P(z) € P(A, B, p, o). Then, for |z|< r, we have
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P(2) - p-LpB+(g-B)(p-q)]Br2

< (A-B)(p=a)r
1-8%r2

1- Bzr2

PROOF. It is easy to see that the transformation

Pl(z) = %:gx ; maps |w(z)] < r onto the circle

2
1-ABr
P, (z) -
1 1-B2r2

< {A-B)r 2.1
1-B¢¢ (2.1)

Then the result follows from (1.3) and (2.1).
THEOREM 1. If f(z) ¢ S(A, B, p, a), then for 2| =r, 0s r<1,
C(r; -A, -B, p, a) < [f(z)] < C(r; A, B, p, ), (2.2)

where (A-B)(p - a
rP(1 + Br) for Byo,

C(r; A, B, p, a) =

p _A(p - a)r
rr.e"tP ) for B=o.

These bounds are sharp, being attained at the point z = re‘¢, 0< ¢ s 2r, by

fo(2) = 2P £ (25 -A, -B, p, ) (2.3)
and
f*(z) = 2% £ (z; A, B, p, @), (2.4)
. . wh
respectively, where - —u
-ip B
(1 + Be™'*%2) for B # o
fo(z3 A, B, psa) =
eA(p - a)e'i°z for B =o

PROOF. From (1.9), we have f(z) ¢ S(A, B, p, a) if and only if

fi(z)  (p-a)
112 ]

flz) = 2P [ =5

, fl e S*(A, B) . (2.5)
It was shown by Janowski [1] that for fl(z) e S*(A, B)
z P1(§) -1

fl(z) =z exp ( é — dg ), Pl(z) e P(A, B). (2.6)
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Thus from (2.5) and (2.6), we have for f(z) ¢ S(A, B, p, a)

f(z) = 2P exp ( } E_l%l_:E_ dz ), P (z) e P(A, B, p, a).
0

Therefore

z
1(2)] = [21P exp (Re ; PELP gy,
o]

substituting ¢ = zt, we obtain

1
| £(z)| = |z|P exp (Re S Eﬁl%l_:E dt).
0]
Hence
1
1£(z)] < |2|P exp ( f max (Re 22 “P)qt).

o |zt] = rt

From Lemma 1, it follows that

max
|zt] = rt

P(zt) -p _ (A-B)(p - a)r .
1+Brt ’

then, after integration, we obtain the upper bounds in (2.2). Similarly, we obtain
the bounds on the left-hand side of (2.2) which ends the proof.
REMARKS ON THEOREM 1.
1. Choosing A =1 and B = -1 in Theorem 1, we get the result due to Goluzina [2].
2. Choosing P =1 and « = o in Theorem 1, we get the result due to Janowski [1].
3. Choosing p=1, A=1 and B = -1 in Theorem 1, we get the result due to
Robertson [3].
4. Choosingp=1,A=1and B =qa = 0 in Theorem 1, we get the result due to
Singh [4].
THEOREM 2. If f(z) ¢ S(A, B, p, a), then for |z| = r< 1

| arg (ﬂsz,)-) l < u&“"—“l sin”! (Br), Bfo, (2.7)
‘ arg (fiél) l < A(p - a)r, B =o0. (2.8)
Y4

These bounds are sharp, being attained by the function fo(z) defined by

A-B -a
{zp(l+Baz) ,B#o,

f (z) = (2.9)
2P exp(A(p - «) 6 2) ,B=o0, |8 =1.
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PROOF. It was shown by Goel and Mehrok [5] that for fl e S*(A, B)

f,(2)
z

< A-8 sin'1 (Br), B # o, (2.10)

arg

f,(2)

arg —

<Ar, B=o. (2.11)

Therefore, the proof of Theorem 2 is an immediate consequence of (1.9), (2.10) and
(2.11).

REMARK ON THEOREM 2.

Choosing p=1, A=1 and B = -1 in Theorem 2, we get the result due to
Pinchuk [6].

3. COEFFICIENT ESTIMATES FOR THE CLASS S(A, B, P, a).

LEMMA 2. If integers p and m are greater than zero; 0s o < p and
-1< B< A< 1. Then

"l -Ap-a)+8j|® 1

2 2
= — { B-A -a
3 b -e, 4 @020 e
-1
:zl [K2(B2 -1) + (B - A)2(p - a)? + 2kB(B - A)(p - a)]

K1l |(B-A)p-a) +Bj |2
j=o (5 +1)2

PROOF. We prove the lemma by induction on m. For m = 1, the lemma is obvious.
Next, suppose that the result is true for m = g-1. We have

(3.1)

q-1
Lo-mdp-al+ z KRB -1+
¢ k=1

k-1 ;12
2 2 . (B -A)p-a) +Bj|
(8 - M)2(p - a)? + 2kB(B - A)(p - a)] x R G 1) }

_ 1 a2 )2 s K22 - 1) +
< Lo - e e T

k-1 2
2 2 . [(B - A)p-a) +Bj|
(B - A)°(p - a)® + 2kB(B - A)(p - a)] x jrio G+ 1)

+[(q-1)2 82 - 1) + (B - n2 (p - «)2 + 2(q - 1)B(B - A)(p - a)] x

2 (8- Mp-0)+8i 1%,
j=o (3+1)
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-1)%8%2 + (B - A)2 (p-a)? 4

(
- s 12

R CEY VS NG 1 T OB TR }
j=o (+1) q

I ICENICEFIEY N
j=o (J+1)
Showing that the result is valid for m = q. This proves the lemma.

P+ 3 a zk e S(A, B, p, a), then
k=p+1

THEOREM 3. If f(z)

n-(p+1)
kgo | (B - A)£p+-1a) + Bk | (3.2)

la | =

for n> p + 1, and these bounds are sharp for all admissible A, B and « and for each

n.
PROOF. As fe S(A, B, p, a), from (1.4) and (1.7), we have

zf'(z) _ +[pB+ (A-8B - a)]w(z
__?%E} " + Bw(z »We

This may be written as
{ Bzf'(z) + [-pB + (B - A)(p - «)1f(z) } w(z) = pf(z) - zf'(z).

Hence
(B¢ o+ T (p+kap, 2™ + [-pg + (B-A)p -a)]C 2P+
k=1

21 ap+k *h (z) =p{ 2P+ kil (p + k)ap+k z

p+k} _

@

P pHk
{ pz¥ + 21 (p + k)ap+k z }

or
[pB + [-pB + (B - A)(p - a)] + kgl {(p+kK)B+

[-p8 + (8 - A)(p - )1} a, KT w(2) = (P - p) +

k
I {p-(p+ a., z
k=1 ( k) } p+k

which may be written as
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t [{(p+k)B+[-pB+ (B-A)p-a)l}a,, z1 w(z)
k=0 ek
® k
kio { -k} Ak 2
- - k+1
where ap 1 and w(z) kz=o bk+1 z

Equating coefficients of z" on both sides of (3.3), we obtain

m-1
kio { (p+k)B+ [-pB + (B - A)(p - )]} ap+k bm-k =

{ -m} ap+m;

which shows that a on right-hand side depends only on

p+m

ap, ap+1, cee ap+(m_1)

of left-hand side. Hence we can write

m-1
DoLC(+k)BHL-pB+ (B-A)p-a)]) a,, 21w
=0

m ©
k k
=z {-k}a z°+ I Az
k=0 PR e K

form=1, 2, 3, ... , and a proper choise of Ak(k 2 0).
Letz=reie,o< r<1,0<6c< 2n, then

:5;1) | (p+K) B+ [ -pB+ (B-A)p-a)]|? ap'fklz &

739

(3.3)

2
lw(re®)| 200

(3.4)

21 |m-1 .
_1 k _iek|2
= 5 J(; kio {(p+k)B+[-pB+ (B-A)p-a)} ap+kr e , do
s L M (b k) B [opB + (8 A) (p-a)lb a,, rkelok
o k=0 P P ) p-e ptk
a1 | m . © 2
1 k_iek k_iok
2 5= [ r {-k} a r-e + I A re do
Ay ko ptk k=m+1 X '
m 2
2k 2k
2 1 |-kl |a rt 4+ g Al r
k=o l p+kl k=m+1 | kl
m 2
2 2k
2k ,ap'fkl "
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Setting r > 1 in (3.4), the inequality (3.4) may be written as

m-1 |2 kz]la |2
. { |(p+k) B + [-pB + (B - A)(p - )] | - pHK
=0
? .5
> ol | l (3.5)

4m
Simplification of (3.5) leads to

2 1 m-1
< z
Iap+m m k=0

2
R - 1) + (8 - A)p - (B - A)(p - o) + 2kl . (3.6)

Replacing p + m by n in (3.6), we are led to

D (k282 - 1) + (B - A)(p - a)x

|a"| : (n-p)2 k=0

2 1 ."'(P"’l)

2
(3.7)
(B -A)Np-a) + 2kB] } |apy| -
where n 2 p + 1.
For n = p + 1, (3.7) reduces to
2 2 2
Iap+1l < (B -A)(p -a)
or
lap,yl < (A-8)(p -a) (3.8)
which is equivalent to (3.2).
To establish (3.2) for n> p + 1, we will apply induction argument.
Fix n, n2 p + 1, and suppose (3.2) holds for k =1, 2, ... , ........ s
n-(p+1). Then
2 n-(p+l)
lagl s —15 (B -m2p-a)?+ 1 (k2% - 1)+
(n-p) k=1
;12
k-1 |[(B-A)(p~w) + Bj |
(B - A)p -a)[(B-A)p-a)+2kB]} m G+ 12 b (3.9)

j=o
Thus, from (3.7), (3.9) and Lemma 2 with m = n - p, we obtain

2

|20 (P (B - A)(p -a) +Bj 7

j=o (i +1)?
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This completes the proof of (3.2). This proof is based on a technique found in
Clunie [7].
For sharpness of (3.2) consider

p

z

(B‘AME'OQ 'I [ l = 1, B f 0.
(1-Bsz) B

f(z) =

REMARK ON THEOREM 3.

Choosing p =1, A=1, and B = -1 in Theorem 3, we get the result due to
Robertson [3] and Schild [8].
4. DISTORTION AND COEFFICIENT BOUNDS FOR FUNCTIONS IN P(A, B, p, a).

THEOREM 4. If P(z) ¢ P(A, B, p, a), then

1 (A-B) (po)r

arg P(z)] < sin”
| | p-[pB + (A-B)(p-a)]Br

5 lz] = r.

The bound is sharp.
PROOF. The proof follows from Lemma 1. To see that the result is sharp, let

1+ [B+ (A-B)(1 - % )18,2

P(z) = p{ TV, B }oalsyl = 1. (4.1)
Putting
oy -([B + (A-B)(1 - )] +8)r
17z § *

1+ [B+ (A-B)(1 - %)]Brz
Bzr2

i /1 - [B+ (A-B)(1 -8 1128 /1 -
1+[B+ (AB)(1-2 )18r2

in (4.1), we have

1 (A-B)(p-a)r
p - [pB+ (A-B)(p - a)lBr

arg P(z) = sin”

An immediate consequence of Lemma 1 is
COROLLARY 1. If P(z) is in P(A, B, p, a), then for |z|] < r<1

p- (AB)(p - a)r-[pB+ (A-B)(p -a)IBr®  _ |5,y

1 - 822
p + (A-B)(p - a)r-[pB + (A-B)(p - o)]Br?
1 - BrC
and
b - (A-B)(p - a)r-[pB + (A-B)(p - a)]Br’ < Re (P(2)) <
1 - Ber?
p + (A-B)(p - a)r-[pB + (A-B)(p - a)]Br’

1 - Bzr
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REMARK ON COROLLARY 1.

Choosing p =1, A=1 and B = -1 in the above corollary we get the following
distortion bounds studied by Libera and Livingston [9] stated in the following
corollary.

COROLLARY 2. If P(z) is in P(1, -1,a) =Pla), 0< a < 1 (the class of
functions P(z) with positive real part of order a, 0 < a < 1), then for |z|] < r< 1

1-2(1 -o)r+(l - 2 o)r? 1+2(1 -a)re(1 - 2 a)r2.
. < |P(2)] = . >
-r -r

and

1 -2(1 -a)r+(1 -2 a)r2 <Re (P(2)) < 1 +2(1 -a)r+(1 -2 Qrz
1-r l1-r

The coefficient bounds which follow are derived by using the method of Clunie

[7].

THEOREM 5. If P(z) =p + = bkzk is in P(A, B, p, a), then
k=1

bl s (A-B)p-a)yn=1,2,...; (4.2)

these bounds are sharp.
PROOF. The representation P(z) in (1.4) is equivalent to

[B+ (A-B)p-a)-BP(2)Iw(z) =P(2) -p, we 0 . (4.3)

or

B+ (A-B)p-a)-B r b2z =z bz* b =p. (4.4)
k=0 k=1
This can be written as
-l n kK, ° k
[(A-B)(p-a)-B = bkz w(z) = = bk z2+ I qz, (4.5)
k=1 k=1 k=n+1

the last term also being absolutely and uniformly convergent in compacta on U.
Writing z = rew, performing the indicated integration and making use of the bound
[w(z)| < |z| < 1 for z in U gives
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n-1 2
(h-8)2p-a)?+ 82 1 b vk

n-1 svat 2
k 1ke| do

2n
I3 (A-B)(p-u)"‘BZbkr
[ k=1

2n n-1 : . 2
7 |{(A-B)p-a)+B z bkr" ek wire®®) |7
¢} k=1

© : 2
rke1ke

21y n .
s k e1ke + 3 9 de
0

T bk r
k=1 k=n+1

> 2k

n 2 2k 2
2 kil lbkl re k=i+1 qul r

The last term is non-negative and r < 1, therefore
(4.6)

P, 5 Ib,

n-1
>
k=1

(A - 8)2(p - o)? + 87 ) 'bk

or
(4.7)

by = a - w20 - @7 2o

< 0. Hence

Since -1 <B <1, we have 82 -1
(4.8)

bl < (A-B)p-a),

If w(z) = zn, then

and this is equivalent to (4.2).

P(z) =p+ (A-B)(p- a)z"+.

which makes (4.2) sharp.
REMARK ON THEOREM 5.
Choosing p =1, A =1, and B = -1 in Theorem 5, we get the result due to Libera

[10] stated in the following corollary.
X eP(1, -1, 1, o) = P(a), 0 S a <1,

COROLLARY 3. IfP(z) =1+ £ b
k=1 K

then

Ibnl <2(l-4a)yn=1,2,3, ... ;

these bounds are sharp.
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