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ABSTRACT. 1In this paper we study the special Dirichlet series

®

Ws) = —2—~Z sin(g%rl)n—s > seC
V3 n=d

This series converges uniformly in the half-plane Re(s) > 1 and thus represents a

holomorphic function there. We show that the function L can be extended to a

holomorphic function in the whole complex-plane. The values of the function L at

the points 0,%*1,-2,%#3,-4,%5,... are obtained. The values at the positive integers

1,3,5,... are determined by means of a functional equation satisfied by L.
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1. INTRODUCTION.

By a Dirichlet series we mean a series of the form

where the coefficients a ~are any given numbers, and s 1is a complex variable [1],
(2].
In this paper we study the special Dirichlet series

®

Ws) = \/—%— sin(z—’;—n)n-s , seC
3 n=1

which converges uniformly in the half-plane Re(s) > 1 and thus represents an analytic
function there. In section l we study the analytic behaviour of the function L
beyond the half-plane Re(s) > 1, and prove that the function L can be extended to a
holomorphic function in the whole complex-plane. Moreover values of L at the points
-m (m=0,1,2,3,...) are obtained at the end of this section. The values of L at the
positive integers 1,3,5,... are determined by means of the functional equation

s-

1
L(s) = (Zéi) F(1-s)cos(%us)L(1—5) ss¢C

2
V3

satisfied by the function L, which we prove in section 2.
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2. ANALYTIC CONTINUATION OF L.

® _ b
. sin(ZEMa™S L, (seC) (2.1
He) ﬁ; 3

is uniformly convergent in the half-plane Re(s) > 1 and so it represents an analytic
function there. The aim of this section is to extend L to the whole complex plane
and to prove that L is holomorphic in C.

LEMMA 2.1. For all values of s in the half-plane Re(s) > 1

L(s) 2 ) G(t)t® ,where
_ 2 -nt Re(t)>o0
G(t) = — 4
25 s
1
) etie b

PROOF. Cousider the Euler's integral

©

r(s) = f T
0
Substitution of nt,n € N, for t 1in the above integral yields

_s >
n (s) = j’ -nt,s-1
; € t dt 1Re(5)>0
Thus for Re(s) > 1, we get
r'(s)L(s) = 2z E sin(zgn) j. e "tes- Tyt
V3 n=1 0
i.e.
2 - -
I(s)L(s) = = J. E 31n(2"n)e ntes-T4¢
V3 s n=1 ’
Thus
PisiL(s) = f G(t)tS™ Mgt
[
Now
G(t) = 1 \n - -nt .
Wk ((e)"-(e)M)e yWhere ¢ _ e2”1/3.
i.e.
1 n _-nt - -nt )
G = — - n n
) iﬁ(g(E) e ;W) e Re(t)>0 .
Thus
1 1 1
G(t) = ( - ) .
iv3 (1-¢eeb) (1-%8eh
By using the identities € - € = i/3 , € + €4+1=0 and € ¢ = 1, we get
G(t) !

"
o
-+
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t + 1)_l is analytic near t=0; therefore it can

The function G(t) = (et +e
be expanded as a power series in t. So we have

LEMMA 2.2. G(t) has the Taylor series expantion

G(t) =D a 20 . lt]< 2r/3
n=o n

where the coefficients a satisfy the recursion formula

=0 ,n21

n
;
- a
a, = 1/3, 38, + 2 ;;;(Zk)! n-k (2.2)

o

PROOF. Since G 1is an even function, the expantion of G can be expressed as

©

G(t) = Z antzn

n=o
which is valid near zero (in fact valid in the disk Itl < -%ﬂ which extends to the

nearest singularities t = t%; of G(t)). The relation G(t)(et + e-t + 1) =1 gives

= = . 2n
(> a t?" (1 + 2 z::7%37|)= 1
n=o n=o )

@ = had 2n
E 2n 2 t -
z anth + 2( ant )( £ o) !) =1
n=o =

n=o

. n
Z antzn +2;(;(2_l}7!an-k)t2n =1

n=o
Thus for the coefficients a  we have the recursion formula
LI
ag = 1/3 , 3an + 2 zz: @R ®n-k = 0 ,n21 .
k=1

This completes the proof of the lemma.
The coefficient a can be determined successively by (2.2). The first few are

easily determined to be

a = —— a, = - ——

o~ 3 1 - 9
.2 - 7

8 = 3 > 283 * -~ 7080

THEOREM 2.1. The function L defined by
T -1
L(s) =gy [ ot Tae LRets)>

can be extended to a holomorphic function in the whole complex plane.

PROOF. Let us define P and Q for Re(s) > 1 by

P(s) G(t)tS dt

He—p S

als) = | c(e)es gt
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The integral .
f G(t)eS gt
1

exists and converges uniformly in any finite region of the s-plane, since the function

(e-t tRe(s)+1)/(e-t+ o-2t +1)

is bounded for all values of Re(s), and we can compare the integral with that of

1/t2. Thus Q 1is an entire function. Recall from Lemma 2.2 that

®

6(t) =2 a t2" telo,1]

n=o
the convergence being uniform on [0,1]. We deduce for Re(s) > 1 that

© 1

P(s) = E f ant2n+s-1dt

n=o0 ©°
@
_ 1
- z Zn+s °n
n=o

Thus P is a meromorphic function on C with simple poles at 0,-2,-4,-6,... .

Since 1/I' 1is an entire function we may now extend L to the whole of C by

L(s) = £(s) . AaCs)
I'(s) I'(s)

(2.3)

Since Q and 1/T are entire functions, the singularities of L can only be those
of P/T . We have seen that P has simple poles at 0,-2,-4,-6,... . Since 1/T
has simple zeros at 0,-2,-4,... it follows that L is regular for all values of s
in the complex plane. This completes the proof of the theorem.
LEMMA 2.3. (i) L has zeros at -1,-3,-5,...
(ii) The values of L at 0,-2,-4,-6,... are given by

L(-2m) = @m)ta, mo=0,1,2,3,6,....

PROOF. (i) This follows immediately from the fact that 1/T has zeros at 0,-1,
-2,-3,..., and thus

L(1-2m) - P(1-2m) Q(‘I—Zm) -0

T(1-2m) © T(1-2m) meN-

(ii) As in (i) we use the partial fraction (2.3) of L to get

P(s) _ Q(s)

Li-2m) = 110 2w T(s) * T(s)

1i Eifl = 1i 1 1 a
328 on T(s) s=-2mD{s) G5 2n+s 0

_oq 1 1
L(-2m) = éig—Zm s) ““Zmrs a.
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Since ' has simple poles at the points -m (m=0,1,2,3,...) with residues (-l)m/m!,

we get

$18.gp (Zmee) TU9) = Res(D ,-2my = Lo
Thus

L(_Zm) =(2m)!am sMm = 0)172)31-..

where a can be determined successively by (2.2).
3. DERIVATION OF THE FUNCTIONAL EQUATION OF L.

In this section we derive the equation

L(s) = 2Zn"  T(18) costl xs)L
= 7 3 cos 7'"3) 1-s) ,seC.

where L is the Dirichlet series (2.1)

L

Ws) = 2 sin(Z0e™% L sec

V3 n=d

Finally we determine the values of L at 1,3,5,..., by the use of the functional
equation obtained above.

LEMMA 3.1. There exists an integral function I such that

L(s) ==-T(1-s)I(s) ,s €C .

PROOF. Let O < r < 1, and let Cr be the contour consisting of the paths Cl’
C2 and C3, where
€, = (=]
C2 = 3+Dr(0) is a circle of radius r and the center at the origin oriented in the
positive direction.

C,y = [r,»).
3 r T’
// © '

{

//

Define the function Ir by

2ni t

s-1
1.(s) = oo f (-t) dt
Cr e + e + 1

We prove now that Ir is independent of r. We have

; . f (-£)s7!
Ir(s) Ir'(S) Z 5rT T =t "
C° e + e + 1
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where C0 is the contour shown in figure (a). Now

’

f ———L——ﬁij——-dt = lip f o) g,

CO e + e + -0 C et+ e—t+1

where C 1is the contour in figure (b).

According to Cauchy's theorem, the integral around C is zero. Thus

s-1
f -—zi:El-———— dt = 0

C e +e-t+1
o

It follows that Ir is independent of r.

(a) (v
Now,
[ o(log t —mi)(s-1)
I(s) = | — gt +
> e +e +1
1 f )51 Ry 1 f ollog t4mi)(s-1)
— t + a1
i ¢, etre tin "or etre b
The middle term approaches zero as r > 0 provided Re(s) > 0, since
20
s 1
I j dat |< M f rRe(s)-1e—(ﬂ+0)Im(S)rda
1 L)
+ Re(s)

<MTr
Hence

—ni(s-1) _mi(s-1) [ s-1
lim I (s) : =2 e J -
r—o T T ¢ e +e +1

Define the function I by
= lim 1 (S)
1(s) r1+o r

Thus we have

dt.

1(s) :__51n(ns) I tt —
n 7 e +e +1

We have seen in the proof of theorem 2.1 that the function defined by the integral

f t -t

e +e +1

is a meromorphic function with simple poles at the points 0,-2,-4,... . Since the

function sin(ws) has simple zeros at 0,-2,-4,... it follows that I is regular for
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all values of s in the complex plane.

Moreover we have

- _f(s)sin(ns)

1(s) L(s)

Thus

I(s) [(1-s) =- L(s)

THEOREM 3.1. The function L satisfies the functional equation

= Z (zﬂ)s-1r(1-s)cos(l as)L(1-s)
L(S) = ;gr 3 7

PROOF. Let Rn =n+y, n=1,2,3,..., and let cn,r (0<r<1l) be the contour
consisting of the positive real axis from Rn to r, a circle radius r and center
at the origin oriented in the positive direction, the positive real axis from r to
Rn’ and finally a circle of radius Rn with center at the origin oriented in the
negative direction.

i.e.

Chp = [Rn,r]+ éDr(o)+[r,Rn]+ goRn(o) .

To deduce the functional equation of L we evaluate the integral

1 ,f (-t)s-?
2ni t _—-_t dt
r,n e +e +1

If we assume s = x 1s a negative real number, then we have
(-t)*x-1 . e (x-1)1log(-t)
It follows that

x-1
'(-t)l = Itl

Since the function (et+e_t+l)'—1 is bounded on the circle EDR 0),

n
f (_t)5—1 .
———dt < X
30, (0)  efre -ty Z MR
n

which goes to zero as n goes to infinity.

Thus we have

-1
1 (-t)°
1(s) = lim ( == J‘ —_— e dt ) .
N L et+e t+1
n,T

Now between aDR (0) and Dr(O) the integrand has poles at the points
n

+ Zgi Ik 2§1(3m+1) and = Z;i(3m‘1)v m=1,2,3,..--
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Denote

(-t)57"

H(t)

®
(ad
-

Thus we have

Res(H, 231) =ﬁ( §”)S-1 e~ "is/2

Res(H,- 221 \/—l— 20T gmis/z

Res(H,221(3me1)) = \/17 (%n)s-1 e mi8/2 (5 1y °

Res(H,-2Z1(3m41)) = \/%(%n)sn1 e™18/2¢30 1)

Res(H,Z%i(}m-1)) =-J%?4§n) e"‘is‘/z(}m-ns.1 .
s-1

. s-1 .
Res(H,-2Z1(5n-1) :-\7‘_34%7:) e™s/ 250 4

The sum of the residues between aDR (0) and BDr(O) equals

2 9 .S- n s-1 -
7?—(37:) cos(%ns)<1+mZ1[(3m+1) -(3m-—‘l)S 1] )

One can easily verify the identity

n s-1 -1 Jn+1
1 (3m+1) ~-(3m-1) = 2 2 sin(znm)ms'1.
* ;2;;[ * ] \/5 m=1 3

Thus the sum of the residues is

5—1 +1
\/—é—(%x) cos(%ns)(%? sin(-§—7zm)ms-1 ) .

It follows that
0o

s-1
-I(s) = \7%—(%-1!) cos(= xs)(J_z—Z sin(%—nm)ms-1 ).
m=
= 7%—(%ﬂ) ) cos(%xs)L(1—s) (3.1)

We have seen that -I(s)T'(l-s) = L(s) for all s € C, so by the identity theorem
the formula (3.1) is true for all s € C. Thus we have proved the functional

equation

2 s-1 1 )
L(s) = (3”0 COS(?“S) r(1-s)L(1-s

2
V3
LEMMA 3.2. The values of L at the points s=2m+l,m=0,1,2,3,... are given by

the formula

Zm+1
L(1+2m) = (- 1)m J; (%z) ag

where am's are determined by (2.2).
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PROOF. For s = -2m the functional equation and the identity
L(-2m) = @2m)! a, o m= 0,1,2,...
of the previous section give the proof of the lemma.
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