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ABSTRACT. Here, a new separation axiom as a generalization of that of Hausdorff is
introduced. Its simple consequences and relations with some other known separation
axioms are studied. That a non-indiscrete topological group satisfies this axiom is

shown.
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1. INTRODUCTION. Five well known separation axioms are introduced and these signifi-
cances are studies in literature [1,2,3,4]. In addition to this, other separation
axioms are formulated and their consequences with interrelations were discussed by sev-
eral investigators. In this connection the papers of C. E. Aull [5] and A. Wilansky
[6] are informative and of much interest.

Here a new separation axiom, which may be taken as a generalization of the

Hausdorff axiom is stated and then its relations with TO, Tl’ T2 separation axioms

and also with other separation axioms KC, US [6]. After that simple consequences of
the above axioms are studied. Finally non-indiscrete topological groups always imply
as H-separation axiom.

DEFINITION. Let (X,T) be a topological space. In a non singletone space, for every_
x€ X there isa y€ X such that x € G, ye H and Gn H=¢ for some G,He T.
Then the space is called H-space and also every singletone space is H-space.

REMARK 1. It is clear that every Hausdorff space is H-space. But converse is not
necessarily true by the following example.

EXAMPLE 1. Consider X = {1,2,3,4} and T = {¢, X,{1,2},{3,4}} there (X,T) is a

H-space but (X,T) is not a Hausdorff space. The space is also non-T0 space.

REMARK 2. Example 1 and the following example show that a H-space and T-space are
independent of each other.
EXAMPLE 2. Consider X = {1,2,3,4} and T = {¢, X,{1},{1,2},{1,2,3}}, then (X,T) is

To—space but it is not a H-space.

REMARK 3. The following example shows that in the property of being H-space is non-
hereditary property.
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EXAMPLE 3. Consider X = {1,2,3,4,5} and T = {¢, X,{1,2,3},{4,5}} then (X,T) is
H-space. Now consider the sub-space {1,2,3} which is not a H-space.

REMARK 4. A To—space which is also H-space is not necessarily a Tl-space (by the

following example).
EXAMPLE 4. Consider X = {1,2,3,4} and T = {¢, X,{1},{1,2},{3},{3,4},{1,3},{1,3,4},
{1,2,3} . Now it is clearly a T,-space and also a H-space. But (X,T) 1is not a

Tl-space.

REMARK 5. Example 1 and the following example shows that a H-space and a T,-space are

1
independent of each other.

EXAMPLE 5. Consider R 1is the set of all real numbers with cofinite topology. It is

clear that the space is T1 but it is not H-space.

REMARK 6. A Tl-space which is also H-space is not necessarily a Tz-space (by the fol-

lowing example).
EXAMPLE 6. Let us consider X = {1,2,3,4,...} and the topology T is cofintite topo-
logy. Now let Xx* = {0,1,2,3,...} and T*=1{G, G u{0} : Ge T}.

Then clearly x*,T*) 1is a topological space and it is clear that the space is

TlLspace as well as H-space. But the space is not a Tz—space.

DEFINITION [6]. A topological space is called KC-space if every compact set is
closed.

REMARK 7. Example 1 and the following example shows that a H-space and a KC-space

are independent of each other.

EXAMPLE 7. Let us consider Rt be the set of all positive real numbers with co-
countable topology. It is clear that the space is KC-space. But it is not a H-space.
REMARK 8. A KC-space which is also H-space is not necessarily a Tz-space (by the fol-
lowing example).

EXAMPLE 8. Consider R' be the set of all positive real numbers with co-countable
topology T. Now let R be the set of all non-negative real numbers and T = {G,

G U{0}: G €T}. Then clearly (R,T) is a topological space and it is clear that

the space is KC-space as well as H-space. But the space is not a Tz-space.

DEFINITION [6]. A topological space is called a US-space if every convergent sequence
has exactly one limit to which it converges.
REMARK 9. (a) Remark 5 and Remark 7 shows that US-space and H-space are independent

of each other. Since T2 => KC => US => Tl (forom [6]).

(b) From the above example 8 it is clear that a US-space which is also H-space

is not necessarily a T,-space.

2
RESULT 1. Let (X’Tl) and (Y’TZ) be two topological spaces. If a non-constant

function f: X > Y is continuous and Y is Tz-space. Then X 1is a H-space.

PROOF. Since f: X > Y 1is a non-constant function, so for every x € X there is a

ye¢ X such that f(x) # £(y). Since £f(x), f(y) €Y and Y {is Tz-space . Hence
there are U,VE€ TZ such that f(x) € U, £f(y)€ V and U€\V = ¢. Then f-l(U)

and f_l(V) are mutually disjoint non-empty open in X [since f 1s continuous].
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xe £5U) and ye £71(v) and £ 0 £7HU) = ¢. Hence X is H-space.
RESULT 2. Let (X,Tl) and (Y,Tz) be two topological spaces. 1If (X’Tl) is a

H-space. Then the product space XxY is also a H-space.
PROOF. Let (x,y) be any point in XxY. Since X is a H-space, then there is a

€ -
X, X such that x € Vl, X € V2 and V1 n V2 ¢ for some Vl’ V2 € Tl' And if

yeUe T2’ then (x,y) € VIXU. (xl,y) € VZXU and (leU) n (VZXU) = ¢ (since

v, n V2 =¢). Hence XxY is a H-space.

RESULT 3. Let (X,T) be a non-indiscrete topological group. Then (X,T) is H-space.
PROOF. Let x € X and V be a non-empty proper open set in X. Case I: Let x¢ V,

since V be a non-empty proper open set in X, so there is a y ¢ X such that y € V.

Let A = x-lv. Then A 1is a open neighborhood of e(identity). Let B = An A-l.
Then B 1is a open neighborhood of e and B = B-l. Let U = yB. Then U 1is a open
neighborhood of y. We claim that x € U. For suppose x € U. Then x¢€¢ yB so

x = yb for some b € B. Then x-1 = b_ly‘l. But b_1 € B_1 = B. So x_l 513.-1y_1 =

1

By-l. Now B < A, then x_l € By "< A.y_1 =x Vy-l. Then ee€ Vy-l. So ye V-a

contradic tion. So x € U. Hence we get, for every x¢€ X, there i1s ye X such that
Xx€ V, y€ U and x€ U, y€ V for some V,U ¢T. Let V' be the complement of V,

so V' is closed and xe V', ye V'. Since every topological group is regular, so

and VI() U1 = ¢. Then xe V, and

there are UpsVy e T such that xe¢ Vs Vie U 1

1

y€ U, such that V., n U1 = ¢ for some Vl’U € T. Hence (X,T) is H-space.

1 1 1
Case II: If x€V then x€ V' (complement of V). Since V 1is open in X so V'
is closed in X. Since V is non-empty so there is a ye V, so yz V'. Since every

topological group is regular space. So there are Vl’VZ €T such that ye V1 and

e = =
\ V2 such that Vln V2 ¢. Hence x¢€ V2, y€ V1 and Vln V2 ¢. Hence it

is H-space.
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