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ABSTRACT. Let E denote the class of functions f(z) analytic in the unit disc D,

normalized so that f(0) 0 f’(0) -I, such that each f(k)(z), k>0 is univalent in D.

In this paper we establish conditions for some functions to belong to class E.
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I. INTRODUCTION.

Let E denote the class of functions analytic in the unit disc D, normalized so

that f(0) 0 f’(0) -I, such that f(k)(z), k>0 is univalent in D. For a survey of

E see [I]. In [2] Shah and Trimble proved the following result:

THEOREM A. Let

f(z) zeBZ(l Z/Zl).
Suppose

and

(1.1)

2+B 2-4B+B2
<z < (1 3)I+B S(2-B)

Then f(z) and all of its derivatives are close-to-convex in D. In particular fEE.

For 0.29,

1.7751 _< z _< 1.8634.

2. MAIN THEOREMS.

In this paper we prove the following:

THEOREM I. Let f(z) be defined by (I.I), suppose that (1.2) holds and B z < I.

Then;

f’(z) is univalent in Izl 0 (0 < O < I) if and only if

2+B202-4pB
Zl -< B (2-Bp) (2.1)

2 Let F be the class of functions which are derivatives of univalent functions of the

from (I.I). For a fixed B, the radius of univalence of F, O F is equal to

2 (B) + (B)2+8
B 2B

0 < B < 1/2, 0 < z < 2 (1.2)
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1+6

THEOREM 2. Let f(z) be defined by (I.I) and suppose that (1.2) holds. If

2+8 -6+8(6-82< z < (2 2)I+6 6

then f(z), f"(z), f"’(z) are close-to-convex and consequently univalent in D.

< 1.6791 In addition, ifIn particular if 6 0.4766, 1.6781 < z

2+62_46 2+6
6(2-6) then f’(z) is not univalent in D.

THEOREM 3. Let

Suppose 0 6 0.4 and

2)f(z) ze6z(l z2/z (2.3)

6+82+68 2-66+3622z, (2.4)
82+28 82

Then f(z) and all of its derivatives are close-to-convex and consequently univalent

in D In particular for 6 0.2314, 3.79664 z 3.7978

3. PROOFS.
6z

PROOF OF THEOREM 1. Proof of sufficiency. The function g(z) --Cl
B 6 as in

f"(z)(1.2), iS convex in D. If we can show that Ret, 0 for Izl E 0 then f’(z)

will be close-to-convex in Izl E 0 and consequently univalent there (see [3]).

f"(z)If o(x) denotes the real part of on Izl 0 where x Rez theng (z)

1___) 4___) x 282x2(x) {2(6 + + 8(60 Zl Zl Zl I
By the maximum principle it suffices to prove that O(x) 0 for x in [-1,13.

For simplicity we write 0(x) ax2+bx+c Observe that b2-4ac O. Thus 0(x)
has two real roots, and we will be done if we can show that

-b-/-4ac
2a (3.1)

(The larger root of (x) is
2a See fgure I).

. (x)

-
Figure I.



ZEROS OF FUNCTIONS WITH UNIVALENT DERIVATIVES 83

Stnce a<O, t. 1) in equivalent to

Zb2-4ac 2ap-b.

From the definition of a and b we have
4-BZl-40B

2ao-b B[ B(I+ 40) 4-I-2_
B > > 0

g z z z

since 0 and (1.2) holds.

Squaring both sides of (3.2) and simplifying we get

4ao(ao-b) -4ac.

Divide by 4a which is negative to get

o(b-ao) c.

Using the definitions of a, b and c, this becomes

zlB(BO-2) 4B0 B202-2.
From this, noting that 60-2 O, we conclude that (3.2) is equivalent to

2+6202 460
Zl 6(2-6p)

which is (2.1).

Proof of necessity. We show that if

2+620 2 -460
zt 6(2-06)

then f"(z) has a root in Izl < 0, which means that f’(z) is not univalent there. The

equation, f"(z)= O, that is

-62 2 (-46 62 2nz + + )z+26 0
Zl --I z

has two negative roots given by

(3.2)

(3.3)

6-4/z ,/’IB2+8/zI2
26

The smaller root lies in the disc zl < 0 if

2

16-4/zI + /2+8/z1
< O.

28/z
Since the roots are negative (3.4) is equivalent to

or

But

2 < 260-(6 -4__) /’62 + 8/Zlz z

-6+ 24 260 /62 + 8/Zlz z

6 + 4 260 4-6z 2613 2
z z Zl z

by (1.2) and 0_<I. Squaring both sides of (3.5) and simplifying we get (3.3).

(3.4)

(3.5)

2+6univalent in D, given (1.2), if and only if z . Og, the radius of univalence of

definition, O F is the largest number such that g(OFZ) is univalent for all geF in D.

Let geF. Then g f’ for some f of the form (I.I). In [2] it is shown that f is

This proves the first part of the theorem. To prove the second part note that by
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g, is non zero because f"(0) # 0. Therefore, by the first part of the theorem, the

condition

2+82g 4OgB2+___ < z < (3 6)
I+8 8(2-80g)

is the necessary and sufficient condition for f(z) and g(OgZ) to be univalent in D.

Let x 2- 0gS. It follows form (3.6) that

x2 (8) x 2 0

which is true if and only if

x
(8) + /Q(8) 2 + 8

2

or if

2 (8) + (8)2+8 (3.7)0g 28

The case of equality in (3.7) corresponds to the case where both inequalities in Q.6)
2+8

are equalities. That is the radius of univalence of the g for which z T is pre-

cisely the expression on the right of (3.7). This proves the second part of the theorem

Note that O F corresponds to 8 .29. Also if 8 0.4746, O F 0.2793.

f’(z)
PROOF OF THEOREM 2 We will show that Re{ 0 and Re{ f(n)(z)} 0 for n 3

8Ze e 8z

and z in D. This wiiI show that f(z) and f(n)(z), n > 2 are ciose-to-convex in D. In
2+8[2] it was shown that, if (1.2) hoids and ]- < z < 2, then Re{ f’(z)} 0 in D. Thus

eSZ
we need oniy show that Re{ f(n)(z)} < 0 for n 3 in D.

eSZ
f(n)(z)

If we denote the reai part of
8z on the unit circie for n 3 by Qn(X) where

e

x Rez it wiii be sufficient to show that Qn(X) 0 for x in [-I,I].

Henceforth we assume that n J and note that

n-I) 8n 2n) x 28n x2n(X =nn-2(_ ++n-(_ -7
The quadratic Qn(X) wiII be nonpositive for aii x e[-I,I] if its discriminant is non-

positive. (We may note that the case when n(X) has two reaI roots is not of interest).

Thus we have

282zi + 882 4n[n-(2+Szl)], n ! 3.

This inequaiity wiii be satisfied if it is satisfied for n 3, that is, if

282zi + 128z + 882-12 0.

-6 + /8(6-82)
This hoids when z

8
which is true by (2.2).

Letting 8 0.4746, caicuiations show that (2.2) impiies 1.6781 z 1.6791.

2+82-48 2+8 2+82-48 by (2 2) Thus if 8z < then byFinaiiy if 8(2-B) $’ then z 8(2-8)

the first part of Theorem f’(z) is not univaient in D. But if 8z I, then f"(0) 0

and f’(z) is not univaient in D.

PROOF OF THEOREM 3 Note that 3- 0.4226 is the smaiIer zero of 2-68 + 382 Thus

8 0.4 guarantees that the rightmost expression in (2.4) is positive. Let a --- and
z
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n(X) Re{ f(n)(z)} on the unit circle where x Rez. We will prove the theorem byeSZ
showing that l(X) O, 2(x) 0 and n(X) 0 for n 3 and x in [-I,I].
First observe that

l(X) -4aSx3 6ax2 + (3a8+8) x + + 3a

and

l’(X) -12aSx 12ax + 3a8 + 8.
1-8 +IWe will have i(-I) eOand i(I) e 0 if e a and e a, respectively.

But both inequalities are true; this follows from (2.4) and the fact that, for 8 < 0.4,

8+I I- 2B+B
B+3 3-8 - l’(X) has one positive and one negative root. Also, since

’(-x)= -9aB + 12a + = a(12-98) + 8 >O,

’(x) lies to the left of -I (See Figure 2)the negative root of I

x=-I x’l

Figure 2.

Thus l(X) _> 0 for x in [-I,I]. Next note that

2(x) -4a82 x3 12aSx2 + (3a82 6a+82)x +28 + 6a8.

Because of (2.4) and the fact that
82 82 for B < .4, the coefficient of x

2-68+382 3(2-82
in 2(x) is negative. If follows from (2.4) that if xE[O,l] we have,

2 822(x) -4a82 12a8 + 3a82 6a+8 + 28 +6a8 + 28 -a(6+82+68) O.

Similarly for x in [-|,O)

2(x) > -12a8 + 28 + 6a8 28(I-3a).

> 28+82
and (2.4). Consequently 2(x) > 0 for xBut l-3a O; this follows from

6+82+68
in [-I,I].

From now on we assume that n > 3. Note that

83-nn(X) -4aB3x3 6anB2x2 + (3aB3-3aBn(n-l)+B3)x + nB2 an(n-l)(n-2) + 3an82,
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and

2-nn
’(x) -12aB2x2 12an$x + 3aB

2
3an(n-l)+B

2

2 2
Since 3a 3an(n-l) + g 0, n’(X) has two negative roots. Let denote the

larger of the roots. If we can show that n(-l) - 0 and -I _> t, then the graph of

(x) -I for x in [-I I]n will be as in Figure 3, and accordingly Cn

n(X)

Figure 3.

But

B3-n (-I) 3(a-I) + n [-3aB 2 + 8
2 + 3ag(n-1)-a(n-1)(n-2)]. The expression

n

inside the bracket above will be negative for n 3 if it is non positive for n 3,

that is, if

a(2-6 + 3 2) 2. (3.8)
2

But (3.8) is a consequence of (2.4), if we note that 2-6 + 3B 0 for 0.4.

Moreover a I. Thus n(-1)__ O.

Now the inequality -I e t is equivalent to

12aB

which is equivalent to

6an 12aB n----$-6a B ---B (3.9)

Note that the left hand side of (3.9) is positive. Squaring both sides of (3.9) and

simplfying, we see that (3.9) is equivalent to

3an(n-4B-1) e B 2(I-9a).
This inequality will hold for n e 3 if it holds fo n 3 that is, if

a e (3.
9(B2-4B+2)

B BBut from (2.4) and the fact that B 0.4, we have that 2_6B+3B2 - and

(3.]0) follows from this.

Finally, letting 8 .2314, cslculations show that (2.$) implies that

3.7964 Zl 3.9798.
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4. REMARKS.

(i) It follows from the proof of the first part of Theorem that if (1.2) holds and
2-4+B2

z < then the inequality z (2-B)
is the necessary and sufficient condition for

f’(z) to be close-to-convex in D. This along with the fact that, given (1.2), f(z) is

2+B
close-to-convex if and only if z ! - implies that if (1.2) holds and Bz < I, (1.3)

is the necessary and sufficient condition for f(z) and f’(z) to be close-to-convex in D.

2 6+B2 + 6 then f"(1) 0 in which case f’(z) is(ii) If in Theorem 3 we have z
2 + 28

not univalent in a disc larger than D.

(iii) In [4] have showed that if

and if

f(z) z eBZ(l-z/zl)(1-z/z2

i/3, 8 b < I,

2b 28 + 48b- 82+b82
a,

82 + 68+6

bE
1-38

b 28 -3aB + bB -3a + 0,

where a and b + --, then f(z) and all of its derivatives are close-to-convex
zlz 2 z z 2

in D. If z 2 z I, and B 0.01 then calculations show that z 2.05 and z 2 94.9298

satisfy the above inequalities. If Zl=Z 2 and B 0.08 then z 4.3478 will satisfy the

above inequalities.

(iv) Let f(z) z eSZ(l-Z/Zl ), where z x + iy I, x ! 3/2 and 0 < B 0.29. We can

show that f(z) and all of its derivative are close-to-convex in D if

(B+2) x + 2 lyll (I+B) (l+B)Izll2,,
and

8[x I(4-B) + (2-B) IZll 2 + 2(2-B)lyll] < 2x I.

When Y -> 0 the region in which z lies is the shaded region in Figure 4. (The

case Yl <- 0 is completely symmetric).

xI

Figure 4.
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As we see from the picture, the smallest value of IZll is obtained when Yl 0 in which

case the above inequalities reduce to (1.3).
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