

NOTE ON THE ZEROS OF FUNCTIONS WITH UNIVALENT DERIVATIVES

MOHAMMAD SALMASSI

College of Basic Studies
University of Hartford
W. Hartford, CT 06117

(Received September 20, 1982 and in revised form July 20, 1983)

ABSTRACT. Let E denote the class of functions $f(z)$ analytic in the unit disc D , normalized so that $f(0) = 0 = f'(0) - 1$, such that each $f^{(k)}(z)$, $k \geq 0$ is univalent in D . In this paper we establish conditions for some functions to belong to class E .

KEY WORDS AND PHRASES. *Univalent functions, close-to-convex functions, entire functions.*

1980 AMS SUBJECT CLASSIFICATION CODE. 30C45, 30D15.

1. INTRODUCTION.

Let E denote the class of functions analytic in the unit disc D , normalized so that $f(0) = 0 = f'(0) - 1$, such that $f^{(k)}(z)$, $k \geq 0$ is univalent in D . For a survey of E see [1]. In [2] Shah and Trimble proved the following result:

THEOREM A. Let

$$f(z) = ze^{\beta z}(1 - z/z_1). \quad (1.1)$$

Suppose

$$0 < \beta \leq 1/2, \quad 0 < z_1 \leq 2 \quad (1.2)$$

and

$$\frac{2+\beta}{1+\beta} \leq z_1 \leq \frac{2-4\beta+\beta^2}{\beta(2-\beta)}. \quad (1.3)$$

Then $f(z)$ and all of its derivatives are close-to-convex in D . In particular $f \in E$.

For $\beta = 0.29$,

$$1.7751 \leq z_1 \leq 1.8634.$$

2. MAIN THEOREMS.

In this paper we prove the following:

THEOREM 1. Let $f(z)$ be defined by (1.1), suppose that (1.2) holds and $\beta z_1 < 1$.

Then;

1 - $f'(z)$ is univalent in $|z| < \rho$ ($0 < \rho \leq 1$) if and only if

$$z_1 \leq \frac{2+\beta^2\rho^2-4\rho\beta}{\beta(2-\beta\rho)}. \quad (2.1)$$

2 - Let F be the class of functions which are derivatives of univalent functions of the form (1.1). For a fixed β , the radius of univalence of F , ρ_F , is equal to

$$\frac{2}{\beta} - \frac{\phi(\beta) + \sqrt{\phi(\beta)^2 + 8}}{2\beta}$$

where

$$\phi(\beta) = \frac{\beta(2+\beta)}{1+\beta}$$

THEOREM 2. Let $f(z)$ be defined by (1.1) and suppose that (1.2) holds. If

$$\frac{2+\beta}{1+\beta} \leq z_1 \leq \frac{-6+\sqrt{8(6-\beta^2)}}{\beta} \quad (2.2)$$

then $f(z)$, $f''(z)$, $f'''(z)$, ... are close-to-convex and consequently univalent in D . In particular if $\beta = 0.4766$, $1.6781 \leq z_1 \leq 1.6791$. In addition, if

$$\frac{2+\beta^2-4\beta}{\beta(2-\beta)} < \frac{2+\beta}{1+\beta} \text{ then } f'(z) \text{ is not univalent in } D.$$

THEOREM 3. Let

$$f(z) = ze^{\beta z}(1 - z^2/z_1^2). \quad (2.3)$$

Suppose $0 < \beta \leq 0.4$ and

$$\frac{6+\beta^2+6\beta}{\beta^2+2\beta} \leq z_1^2 \leq \frac{2-6\beta+3\beta^2}{\beta^2} \quad (2.4)$$

Then $f(z)$ and all of its derivatives are close-to-convex and consequently univalent in D . In particular for $\beta = 0.2314$, $3.79664 \leq z_1 \leq 3.7978$

3. PROOFS.

PROOF OF THEOREM 1. Proof of sufficiency. The function $g(z) = \frac{e^{\beta z}-1}{\beta}$, β as in (1.2), is convex in D . If we can show that $\operatorname{Re}\{\frac{f''(z)}{g'(z)}\} \leq 0$ for $|z| \leq \rho$ then $f'(z)$ will be close-to-convex in $|z| \leq \rho$ and consequently univalent there (see [3]).

If $\phi_\rho(x)$ denotes the real part of $\frac{f''(z)}{g'(z)}$ on $|z| = \rho$, where $x = \operatorname{Re}z$, then

$$\phi_\rho(x) = \{2(\beta - \frac{1}{z_1}) + \frac{\beta^2}{z_1^2}\rho^2\} + \beta(\beta - \frac{4}{z_1})x - \frac{2\beta^2}{z_1^2}x^2.$$

By the maximum principle it suffices to prove that $\phi_\rho(x) \leq 0$ for x in $[-1, 1]$. For simplicity we write $\phi_\rho(x) = ax^2+bx+c$. Observe that $b^2-4ac > 0$. Thus $\phi_\rho(x)$ has two real roots, and we will be done if we can show that

$$-\rho \geq \frac{-b-\sqrt{b^2-4ac}}{2a} \quad (3.1)$$

(The larger root of $\phi_\rho(x)$ is $\frac{-b+\sqrt{b^2-4ac}}{2a}$. See figure 1).

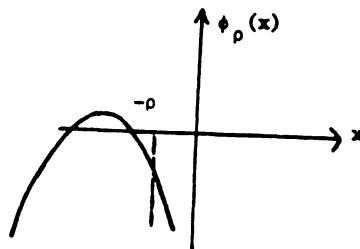


Figure 1.

Since $a < 0$, (3.1) is equivalent to

$$\sqrt{b^2 - 4ac} \leq 2ap - b. \quad (3.2)$$

From the definition of a and b we have

$$2ap - b = \beta \left[\frac{4}{z_1} - \beta \left(1 + \frac{4\rho}{z_1} \right) \right] = \beta \frac{4 - \beta z_1 - 4\rho\beta}{z_1} \geq \frac{4 - 1 - 2}{z_1} = \frac{1}{z_1} > 0$$

since $\rho \leq 1$ and (1.2) holds.

Squaring both sides of (3.2) and simplifying we get

$$4ap(ap - b) \geq -4ac.$$

Divide by $4a$ which is negative to get

$$\rho(b - ap) \geq c.$$

Using the definitions of a , b and c , this becomes

$$z_1 \beta(\beta\rho - 2) \geq 4\beta\rho - \beta^2\rho^2 - 2.$$

From this, noting that $\beta\rho - 2 < 0$, we conclude that (3.2) is equivalent to

$$z_1 \leq \frac{2 + \beta^2\rho^2 - 4\beta\rho}{\beta(2 - \beta\rho)},$$

which is (2.1).

Proof of necessity. We show that if

$$z_1 > \frac{2 + \beta^2\rho^2 - 4\beta\rho}{\beta(2 - \beta\rho)} \quad (3.3)$$

then $f''(z)$ has a root in $|z| < \rho$, which means that $f'(z)$ is not univalent there. The equation, $f''(z) = 0$, that is

$$\frac{-\beta^2}{z_1} z^2 + \left(\frac{-4\beta}{z_1} + \beta^2 \right) z + 2\beta - \frac{2}{z_1} = 0$$

has two negative roots given by

$$\frac{\beta - 4/z_1 \pm \sqrt{\beta^2 + 8/z_1^2}}{2\beta/z_1}$$

The smaller root lies in the disc $|z| < \rho$ if

$$\left| \frac{\beta - 4/z_1 + \sqrt{\beta^2 + 8/z_1^2}}{2\beta/z_1} \right| < \rho. \quad (3.4)$$

Since the roots are negative (3.4) is equivalent to

$$-(\beta - \frac{4}{z_1}) - \sqrt{\beta^2 + 8/z_1^2} < \frac{2\beta\rho}{z_1}$$

or

$$-\beta + \frac{4}{z_1} - \frac{2\beta\rho}{z_1} < \sqrt{\beta^2 + 8/z_1^2}. \quad (3.5)$$

But

$$-\beta + \frac{4}{z_1} - \frac{2\beta\rho}{z_1} = \frac{4 - \beta z_1 - 2\beta\rho}{z_1} \geq \frac{2}{z_1} > 0$$

by (1.2) and $\rho \leq 1$. Squaring both sides of (3.5) and simplifying we get (3.3).

This proves the first part of the theorem. To prove the second part note that by definition, ρ_F is the largest number such that $g(\rho_F z)$ is univalent for all $g \in F$ in D .

Let $g \in F$. Then $g = f'$ for some f of the form (1.1). In [2] it is shown that f is

univalent in D , given (1.2), if and only if $z_1 \geq \frac{2+\beta}{1+\beta} \cdot \rho_g$, the radius of univalence of

g, is non zero because $f''(0) \neq 0$. Therefore, by the first part of the theorem, the condition

$$\frac{2+\beta}{1+\beta} \leq z_1 \leq \frac{2+\beta^2 \rho_g - 4\rho_g \beta}{\beta(2-\beta \rho_g)} \quad (3.6)$$

is the necessary and sufficient condition for $f(z)$ and $g(\rho_g z)$ to be univalent in D.

Let $x = 2 - \rho_g \beta$. It follows from (3.6) that

$$x^2 - \phi(\beta) x - 2 \geq 0$$

which is true if and only if

$$x \geq \frac{\phi(\beta) + \sqrt{\phi(\beta)^2 + 8}}{2}$$

or if

$$\rho_g \leq \frac{2}{\beta} - \frac{\phi(\beta) + \sqrt{\phi(\beta)^2 + 8}}{2\beta} \quad (3.7)$$

The case of equality in (3.7) corresponds to the case where both inequalities in (3.6) are equalities. That is the radius of univalence of the g for which $z_1 = \frac{2+\beta}{1+\beta}$ is precisely the expression on the right of (3.7). This proves the second part of the theorem.

Note that $\rho_F = 1$ corresponds to $\beta \approx .29$. Also if $\beta = 0.4746$, $\rho_F \approx 0.2793$.

PROOF OF THEOREM 2. We will show that $\operatorname{Re}\left\{\frac{f'(z)}{e^{\beta z}}\right\} \geq 0$ and $\operatorname{Re}\left\{\frac{f^{(n)}(z)}{e^{\beta z}}\right\} \leq 0$ for $n \geq 3$

and z in D. This will show that $f(z)$ and $f^{(n)}(z)$, $n \geq 2$ are close-to-convex in D. In [2] it was shown that, if (1.2) holds and $\frac{2+\beta}{1+\beta} \leq z_1 \leq 2$, then $\operatorname{Re}\left\{\frac{f'(z)}{e^{\beta z}}\right\} \geq 0$ in D. Thus we need only show that $\operatorname{Re}\left\{\frac{f^{(n)}(z)}{e^{\beta z}}\right\} \leq 0$ for $n \geq 3$ in D.

If we denote the real part of $\frac{f^{(n)}(z)}{e^{\beta z}}$ on the unit circle for $n \geq 3$ by $\phi_n(x)$ where $x = \operatorname{Re}z$, it will be sufficient to show that $\phi_n(x) \leq 0$ for x in $[-1,1]$.

Henceforth we assume that $n \geq 3$ and note that

$$\phi_n(x) = n\beta^{n-2}(\beta - \frac{n-1}{z_1}) + \frac{\beta^n}{z_1} + \beta^{n-1}(\beta - \frac{2n}{z_1})x - \frac{2\beta^n}{z_1}x^2.$$

The quadratic $\phi_n(x)$ will be nonpositive for all $x \in [-1,1]$ if its discriminant is non-positive. (We may note that the case when $\phi_n(x)$ has two real roots is not of interest).

Thus we have

$$\beta^2 z_1^2 + 8\beta^2 \leq 4n[n-(2+\beta z_1)], \quad n \geq 3.$$

This inequality will be satisfied if it is satisfied for $n = 3$, that is, if

$$\beta^2 z_1^2 + 12\beta z_1 + 8\beta^2 - 12 \leq 0.$$

This holds when $z_1 \leq \frac{-6 + \sqrt{8(6-\beta^2)}}{\beta}$, which is true by (2.2).

Letting $\beta = 0.4746$, calculations show that (2.2) implies $1.6781 \leq z_1 \leq 1.6791$.

Finally if $\frac{2+\beta^2-4\beta}{\beta(2-\beta)} < \frac{2+\beta}{1+\beta}$, then $z_1 > \frac{2+\beta^2-4\beta}{\beta(2-\beta)}$ by (2.2). Thus if $\beta z_1 < 1$, then by the first part of Theorem 1 $f'(z)$ is not univalent in D. But if $\beta z_1 = 1$, then $f''(0) = 0$ and $f'(z)$ is not univalent in D.

PROOF OF THEOREM 3. Note that $\frac{3-\sqrt{3}}{3} \approx 0.4226$ is the smaller zero of $2-6\beta + 3\beta^2$. Thus

$\beta \leq 0.4$ guarantees that the rightmost expression in (2.4) is positive. Let $a = \frac{1}{z_1^2}$ and

$\phi_n(x) = \operatorname{Re}\left\{\frac{f^{(n)}(z)}{e^{\beta z}}\right\}$ on the unit circle where $x = \operatorname{Re}z$. We will prove the theorem by showing that $\phi_1(x) \geq 0$, $\phi_2(x) \geq 0$ and $\phi_n(x) \leq 0$ for $n \geq 3$ and x in $[-1,1]$. First observe that

$$\phi_1(x) = -4a\beta x^3 - 6ax^2 + (3a\beta + \beta)x + 1 + 3a$$

and

$$\phi_1'(x) = -12a\beta x^2 - 12ax + 3a\beta + \beta.$$

We will have $\phi_1(-1) \geq 0$ and $\phi_1(1) \geq 0$ if $\frac{1-\beta}{3-\beta} \geq a$ and $\frac{\beta+1}{3+\beta} \geq a$, respectively.

But both inequalities are true; this follows from (2.4) and the fact that, for $\beta \leq 0.4$,

$\frac{\beta+1}{\beta+3} > \frac{1-\beta}{3-\beta} > \frac{2\beta+\beta^2}{6+\beta^2+6\beta}$. $\phi_1'(x)$ has one positive and one negative root. Also, since

$$\phi_1'(-x) = -9a\beta + 12a + \beta = a(12-9\beta) + \beta > 0,$$

the negative root of $\phi_1'(x)$ lies to the left of -1 . (See Figure 2).

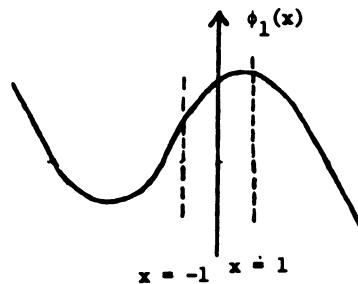


Figure 2.

Thus $\phi_1(x) \geq 0$ for x in $[-1,1]$. Next note that

$$\phi_2(x) = -4a\beta^2 x^3 - 12a\beta x^2 + (3a\beta^2 - 6a + \beta^2)x + 2\beta + 6a\beta.$$

Because of (2.4) and the fact that $\frac{\beta^2}{2-6\beta+3\beta^2} > \frac{\beta^2}{3(2-\beta^2)}$ for $\beta \leq 0.4$, the coefficient of x in $\phi_2(x)$ is negative. It follows from (2.4) that if $x \in [0,1]$ we have,

$$\phi_2(x) \geq -4a\beta^2 - 12a\beta + 3a\beta^2 - 6a + \beta^2 + 2\beta + 6a\beta = \beta^2 + 2\beta - a(6 + \beta^2 + 6\beta) > 0.$$

Similarly for x in $[-1,0]$

$$\phi_2(x) > -12a\beta + 2\beta + 6a\beta = 2\beta(1-3a).$$

But $1-3a > 0$; this follows from $\frac{1}{3} > \frac{2\beta+\beta^2}{6+\beta^2+6\beta}$ and (2.4). Consequently $\phi_2(x) \geq 0$ for x in $[-1,1]$.

From now on we assume that $n \geq 3$. Note that

$$\beta^{3-n}\phi_n(x) = -4a\beta^3 x^3 - 6an\beta^2 x^2 + (3a\beta^3 - 3a\beta n(n-1) + \beta^3)x + n\beta^2 - an(n-1)(n-2) + 3an\beta^2,$$

and

$$\beta^{2-n} \phi_n'(x) = -12a\beta^2 x^2 - 12an\beta x + 3a\beta^2 - 3an(n-1)\beta^2$$

Since $3a\beta^2 - 3an(n-1)\beta^2 < 0$, $\phi_n'(x)$ has two negative roots. Let t denote the larger of the roots. If we can show that $\phi_n(-1) \leq 0$ and $-1 \geq t$, then the graph of ϕ_n will be as in Figure 3, and accordingly $\phi_n(x) \leq -1$ for x in $[-1, 1]$.

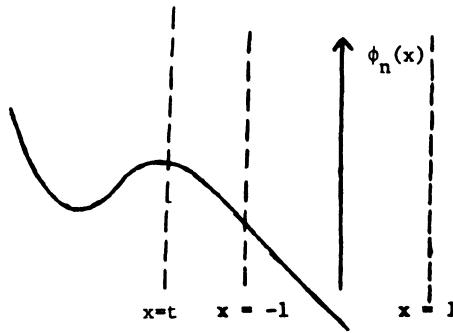


Figure 3.

But

$$\beta^{3-n} \phi_n(-1) = \beta^3(a-1) + n[-3a\beta^2 + \beta^2 + 3a\beta(n-1) - a(n-1)(n-2)]. \text{ The expression}$$

inside the bracket above will be negative for $n > 3$ if it is non positive for $n = 3$, that is, if

$$a(2-6\beta + 3\beta^2) \geq \beta^2. \quad (3.8)$$

But (3.8) is a consequence of (2.4), if we note that $2-6\beta + 3\beta^2 > 0$ for $\beta \leq 0.4$.

Moreover $a < 1$. Thus $\phi_n(-1) \leq 0$.

Now the inequality $-1 \geq t$ is equivalent to

$$-1 \geq \frac{-6an\beta + \sqrt{36a^2n\beta^2 + 36a^2\beta^4 + 12a\beta^4}}{12a\beta^2}$$

which is equivalent to

$$6an\beta - 12a\beta^2 \geq \sqrt{36a^2n\beta^2 + 36a^2\beta^4 + 12a\beta^4}. \quad (3.9)$$

Note that the left hand side of (3.9) is positive. Squaring both sides of (3.9) and simplifying, we see that (3.9) is equivalent to

$$3an(n-4\beta-1) \geq \beta^2(1-9a).$$

This inequality will hold for $n \geq 3$ if it holds for $n = 3$, that is, if

$$a \geq \frac{\beta^2}{9(\beta^2-4\beta+2)}. \quad (3.10)$$

But from (2.4) and the fact that $\beta \leq 0.4$, we have that $\frac{\beta^2}{2-6\beta+3\beta^2} > \frac{\beta^2}{9(\beta^2-4\beta+2)}$ and (3.10) follows from this.

Finally, letting $\beta = .2314$, calculations show that (2.4) implies that $3.7964 \leq z_1 \leq 3.9798$.

4. REMARKS.

(i) It follows from the proof of the first part of Theorem 1 that if (1.2) holds and $\beta z_1 < 1$ then the inequality $z_1 \leq \frac{2-4\beta+\beta^2}{\beta(2-\beta)}$ is the necessary and sufficient condition for $f'(z)$ to be close-to-convex in D . This along with the fact that, given (1.2), $f(z)$ is close-to-convex if and only if $z_1 \geq \frac{2+\beta}{1+\beta}$ implies that if (1.2) holds and $\beta z_1 < 1$, (1.3) is the necessary and sufficient condition for $f(z)$ and $f'(z)$ to be close-to-convex in D .

(ii) If in Theorem 3 we have $z_1^2 = \frac{6+\beta^2+6\beta}{\beta^2+2\beta}$ then $f''(1) = 0$ in which case $f'(z)$ is not univalent in a disc larger than D .

(iii) In [4] I have showed that if

$$f(z) = z e^{\beta z} (1-z/z_1)(1-z/z_2)$$

and if

$$0 < \beta < 1/3, \quad \beta \leq b \leq 1,$$

$$\frac{2b - 2\beta + 4\beta b - \beta^2 + b\beta^2}{\beta^2 + 6\beta + 6} \geq a,$$

$$a \geq \frac{b\beta}{1-3\beta},$$

$$b - 2\beta - 3a\beta + b\beta - 3a + 1 \geq 0,$$

where $a = \frac{1}{z_1 z_2}$ and $b = \frac{1}{z_1} + \frac{1}{z_2}$, then $f(z)$ and all of its derivatives are close-to-convex in D . If $z_2 > z_1$, and $\beta = 0.01$ then calculations show that $z_1 = 2.05$ and $z_2 = 94.9298$ satisfy the above inequalities. If $z_1 = z_2$ and $\beta = 0.08$ then $z_1 = 4.3478$ will satisfy the above inequalities.

(iv) Let $f(z) = z e^{\beta z} (1-z/z_1)$, where $z_1 = x_1 + iy_1$, $x_1 \geq 3/2$ and $0 < \beta \leq 0.29$. We can show that $f(z)$ and all of its derivative are close-to-convex in D if

$$(\beta+2)x_1 + 2|y_1|(1+\beta) \leq (1+\beta)|z_1|^2$$

and

$$\beta[x_1(4-\beta) + (2-\beta)|z_1|^2 + 2(2-\beta)|y_1|] \leq 2x_1.$$

When $y_1 \geq 0$ the region in which z_1 lies is the shaded region in Figure 4. (The case $y_1 \leq 0$ is completely symmetric).

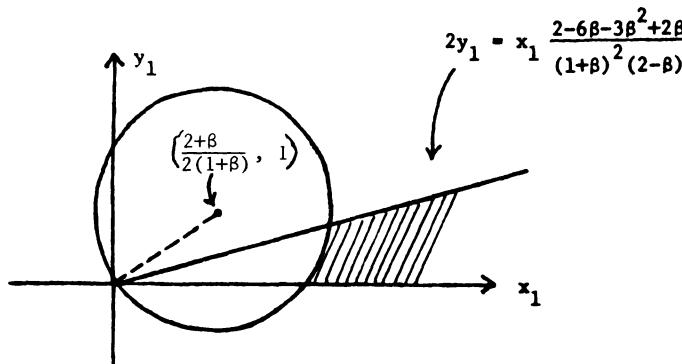


Figure 4.

As we see from the picture, the smallest value of $|z_1|$ is obtained when $y_1 = 0$ in which case the above inequalities reduce to (1.3).

ACKNOWLEDGEMENT. The author acknowledges his debt to the referee and Professor S. Y. Trimble for their comments on this paper.

REFERENCES

1. SHAH, S.M. and TRIMBLE, S.Y. Analytic Functions with Univalent Derivatives, Indian Journal of Mathematics, Vol. 20, No. 3, Sept. 1978, pp. 265-299.
2. SHAH, S.M. and TRIMBLE, S.Y. On the Zeros of Univalent Functions with Univalent Derivatives, Annali di Mathematica pura ed applicata (IV), Vol. CXXI, PP. 309-317.
3. KAPLAN, W. Close-to-Convex Schlicht Functions, Michigan Math. Jour., 1 (1952), pp. 169-185.
4. SALMASSI, M. Some Classes of Entire Functions of Exponential Type in One and Several Complex Variables, Doctoral Dissertation 1978, University of Kentucky.

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru