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ABSTRACT. Let E denote the class of functions f(z) analytic in the unit disc D,
normalized so that £(0) = 0 = £'(0) -1, such that each f(k)(z), k>0 is univalent in D.

In this paper we establish conditions for some functions to belong to class E.
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1. INTRODUCTION.

Let E denote the class of functions analytic in the unit disc D, normalized so
that £(0) = 0 = £'(0) -1, such that f(k)(z), k>0 is univalent in D. For a survey of
E see [1]. In [2] Shah and Trimble proved the following result:

THEOREM A. Let

£(z) = 2eP2(1 - 2/2)). (1.1)
Suppose
0<B<1/2,0<z 22 (1.2)
and
. 2
248 2-4B+8
148 2 %1 X Tgz-my ¢ (1.3)

Then f(z) and all of its derivatives are close-to-convex in D. In particular feE.
For B = 0.29,
1.7751 < z; < 1.8634.

2. MAIN THEOREMS.

In this paper we prove the following:

THEOREM 1. Let f(z) be defined by (l.1), suppose that (1.2) holds and B8 z) < 1.
Then;
1 - £'(z) is univalent in |z| < p (0 < p < 1) if and only if

2.2
2+Bp“~4pB
21 X T g(2-Bo) -

2 - Let F be the class of functions which are derivatives of univalent functions of the

(2.1)

from (l1.1). For a fixed B, the radius of univalence of F, pp> 1is equal to

_0(8) + v (p)2+8

2
8 28
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where

B(2+8)
1+8

¢ (B) =

THEOREM 2. Let f(z) be defined by (l.1) and suppose that (1.2) holds, If

28 -6+/8(6-87) (2.2)
1+ =71 = B .
then f(z), f"(z), f"'(z),... are close-to-convex and consequently univalent in D.
In particular if B = 0.4766, 1.6781 < z, < 1.6791 . 1In addition, if

24p2-48 2+8

_ A .
8(2-8) < ) then f'(z) 1is not univalent in D.

THEOREM 3. Let
f£(z) = zeP2(1 - 2%/z)%) . (2.3)

Suppose 0 < B < 0.4 and

2 - 2
6+? +68 < 2‘2 < 2 66#38_ (2.4)
B2+28 : B2
Then f(z) and all of its derivatives are close-to-convex and consequently univalent

in D . In particular for B8 = 0.2314, 3,79664 < z) < 3.7978

3. PROOFS.

Bz
PROOF OF THEOREM 1. Proof of sufficiency. The function g(z) = S"E:l’ B as in
. . £'"(z) '
(1.2), is convex in D. If we can show that Re{g7?;T~ < 0 for lzl < p then f'(2)
will be close-to-convex in |z| < p and consequently univalent there (see [3]).
A1)
If ¢p(x) denotes the real part of é,g:g on lz| = p, where x = Rez, then
2 2
o () = (28 -1y + 852y wgg -4y - 280
o 2, 24 z) z,

By the maximum principle it suffices to prove that ¢p(x) <0 for x in [-1,1].
For simplicity we write ¢o(x) = ax?+bx+c . Observe that b2-4ac > 0. Thus oo(x)
has two real roots, and we will be done if we can show that

> -_l)_-/bz_-l;a_c

-p 2 38 (3.1)
(The larger root of ¢o(x) is :E:~E§gféf . See figure 1).
4
rop(x)
-
N\ 3 X
| ?

Figure 1.
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Since a<0, (3.1) is cquivalent to

'b2-4ac < 2ap-b. (3.2)
From the definition of a and b we have

2ap-b = e[gl— B(1+ ;‘—‘1’)1 -8

A-BZI—AQB s 4-1-2 - l
Z1 | 2y

>0

since p < 1 and (1.2) holds.
Squaring both sides of (3.2) and simplifying we get
4ap(ap-b) > -4ac.
Divide by 4a which is negative to get
p(b-ap) > c.
Using the definitions of a, b and c, this becomes
2\ 8(Bo-2) > 4Bp - B%p2-2.
From this, noting that Bp-2 < 0, we conclude that (3.2) is equivalent to

. < 248202 - 4Bp
1 = B8(2-Bp) ’

which is (2.1).
Proof of necessity. We show that if

2.2 _
2 > 2+Bp“ -4Bp
B(2-pB)

then £"(z) has a root in |z| < p, which means that f'(z) is not univalent there. The

(3.3)

equation, f"(z) = 0, that is

-g2 -

CHp (—ﬁE +87)z + 28 - 2 =0
z) z, z;
has two negative roots given by

B-4/z) + /8248/2 2
28
21

The smaller root lies in the disc ]z] < p if

B-4/z) + /B2+8/z,2

28/2l
Since the roots are negative (3.4) is equivalent to

-~ -4y - /B2 48z 2 < 20
Zl z

< p. (3.4)

1

or

- B+ g - Zgg < /8% + 8/212 . (3.5)

1 1
But
4-Bz, - 2Bp
- + é - gﬁe = ————%——_—__ > Z >0
zl z 1 -z

by (1.2) and p<l. Squaring both sides of (3.5) and simplifying we get (3.3).

This proves the first part of the theorem. To prove the second part note that by
definition, pp is the largest number such that g(ppz) is univalent for all geF in D.
Let geF. Then g = f' for some f of the form (1.1). 1In [2] it is shown that f is

248

1+8° , the radius of univalence of

univalent in D, given (1.2), if and only if z) > P

g
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g, is non zero because f"(0) # 0. Therefore, by the first part of the theorem, the

condition
2
248p, - 4p_B
248 8 8
8 221 2 B(Z—Bpg) (3.6)

is the necessary and sufficient condition for f(z) and g(ogz) to be univalent in D.
Let x = 2- pr. It follows form (3.6) that

x2 - ¢(B) x -2>0
which is true if and only if

> 8B + Vo) + 8
- 2

or if
2 _ 4(B) + /9(8)%+8
p, <= - =T (3.7)
g -8B 28
The case of equality in (3.7) corresponds to the case where both inequalities in (3 .6)
are equalities. That is the radius of univalence of the g for which z; = %{% is pre-

cisely the expression on the right of (3.7). This proves the second part of the theorem.
Note that pp = 1 corresponds to 8 = .29. Also if B = 0.4746, Py 2 0.2793.

f'(z)
Bz

} > 0 and Re{gﬁzliil} <0 forn >3

PROOF OF THEOREM 2. We will show that Re{
e

and z in D. This will show that f(z) and f(n)(z), n > 2 are close-to-convex in D. In

Al
[2]) it was shown that, if (1.2) holds and 248 <z) < 2, then Re{g—éizlg 0 in D. Thus

1+8 —
f(n)(z) e
we need only show that Re(———EE——) < 0 for n > 3 in D.
e
£ (2)
1f we denote the real part of 8z on the unit circle for n > 3 by ¢n(x) where
e

x = Rez , it will be sufficient to show that ¢n(x) < 0 for x in [-1,1].

Henceforth we assume that n > 3 and note that

- ng"2¢g - 07ly L BT an-1g 20
¢,(x) = nBT (B zl) + 2 + 87 0(8 zl) x

n
1
The quadratic ¢n(x) will be nonpositive for all x €[-1,1] if its discriminant is non-

positive. (We may note that the case when ¢n(x) has two real roots is not of interest).
Thus we have

82212 + 882 < 4n[n-(248z,)], n > 3.
This inequality will be satisfied if it is satisfied for n = 3, that is, if

822)2 + 128z, + 88%-12 < 0.

. =6 + /8(6-8%)
B

This holds when z) < , which is true by (2.2).

Letting B = 0.4746, calculations show that (2.2) implies 1.6781 < z; < 1.6791.

2 2
2482-48 248 2+82-48
B(2-B) < T+g> them 21 > pp)

the first part of Theorem 1 f'(z) is not univalent in D. But if le =1, then £"(0) = 0

Finally if by (2.2). Thus if le < 1, then by

and f'(z) is not univalent in D.

3-73
3

B < 0.4 guarantees that the rightmost expression in (2.4) is positive. Let a = 1—5 and
z
1

PROOF OF THEOREM 3. Note that < 0.4226 is the smaller zero of 2-68 + 382. Thus
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n
¢y (x) = Refﬁ——gfil} on the unit circle where x = Rez. We will prove the theorem by
e
showing that ¢l(x) >0, ¢,(x) > 0 and ¢n(x) <0 for n > 3 and x in [-1,1].
First observe that
¢l(x) = —4an3 - 6ax? + (3aB+B) x + 1 + 3a
and
6)"(x) = -12aBx? - 12ax + 3aB + 8.
. 1-8 +1
We will have ¢l(—1) 2 0and ¢1(1) >0 if E:E»z a and %IE > a, respectively.
But both inequalities are true; this follows from (2.4) and the fact that, for 8 < 0.4,

- 2
%}% > ; g > %%%gigﬁ . @1'(x) has one positive and one negative root. Also, since

¢1'(-X)= -9aB + 12a + B= a(12-98) + B >0,

the negative root of ¢1'(x) lies to the left of -1. (See Figure 2).

Figure 2.

Thus ol(x) > 0 for x in [-1,1]. Next note that
0,(x) = -4a8% x3 - 12a8x? + (3a8% - 6a+8%)x +28 + 6aB.
2
— s o B
2-68+38°  3(2-82)
in ¢2(x) is negative. If follows from (2.4) that if xe[0,1] we have,

Because of (2.4) and the fact that for B < .4, the coefficient of x

2
0,(x) > -4aB? - 12a8 + 3aB2 - 6a+8  + 28 +6aB = 8% + 28 -a(6+B8%+68) > 0.
Similarly for x in [-1,0)
0,(x) > -12aB + 28 + 6aB = 28(1-3a).

2
But 1-3a > 0; this follows from % > 28487 and (2.4). Consequently ¢2(x) > 0 for x

2
6+8°+68
in [-1,1].
From now on we assume that n > 3. Note that

837, (x) = -4a8%x> - 6anBZx? + (3a83-3aBn(n-1)+8%)x + n8% - an(n-1)(n-2) + 3an8?,
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and
2-n

8 2x2

¢n‘(x) = -12aB - 12anBx + 3aB2 - 3an(n-l)+B2
Since 3a62 - 3an(n-1) + 82 < 0, wn'(x) has two negative roots. Let ¢t denote the
larger of the roots. I[f we can show that @n(-l) <0 and -1 2 t, then the graph of

LR will be as in Figure 3, and accordingly ¢n(x) < -1 for x in [-1,117.

ALY
K d
©
-}
~
o
~

x=t x= -1

]

Figure 3.
But
3-n 3 2 2 X
B8 ¢n(-l) = B7(a-1) + n [-3aB” + B” + 3aB(n-1)-a(n-1)(n-2)]. The expression

inside the bracket above will be negative for n > 3 if it is non positive for n = 3,
that is, if

a(2-68 + 38%) = 82, (3.8)
But (3.8) is a consequence of (2.4), if we note that 2-68 + 382 > 0 for B < 0.4.

Moreover a < 1. Thus ¢n(-1) < 0.

Now the inequality -1 2 t is equivalent to

. —bang + V36a’nB? + 36a’B" + 12aR"

-1
12aB2
which is equivalent to
6anB - 12ag? > V36a?nBZ + 36aZB" + 12aB" . (3.9)

Note that the left hand side of (3.9) is positive. Squaring both sides of (3.9) and

simplifying, we see that (3.9) is equivalent to

3an(n-48-1) 2> B2(1-9a).
This inequality will hold for =n 2 3 1if it holds fo n = 3 , that is, if

32

a2 e e, (3.10)
9(B?-4B+2)

8? g2 d

~ < - U —
But from (2.4) and the fact that B < 0.4, we have that 7 6B+382 > 9(82;48+2) an
(3.10) follows from this.
Finally, letting 8 = .2314, calculations show that (2.4) implies that

3.7964 < z, < 3.9798.
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4. REMARKS.

(i) It follows from the proof of the first part of Theorem 1 that if (1.2) holds and

- 2
Bz; < 1 then the inequality z; < ZE%%E%T is the necessary and sufficient condition for

£'(z) to be close-to-convex in D. This along with the fact that, given (1.2), f(z) is

%{% implies that if (1.2) holds and Bz; < 1, (1.3)
is the necessary and sufficient condition for f(z) and f'(z) to be close-to-convex in D.
2
2 _ 6B + 6B

g2 + 28

close-to-convex if and only if z) 2

(ii) If in Theorem 3 we have z en f"(l1) = 0 in which case f'(z) is
1

not univalent in a disc larger than D.

(iii) In [4] I have showed that if

£(z) = z eB%(l-2/2)) (1-2/25)

and if

0<8<1/3, B<b=<1,

2b - 28 + 4Bb- 8%+beZ

82 + 6B+6 -
b8
aZ138

b - 28 -3aB + b8 -3a + 1 >0,
where a = L and b = —L-+ -Ly then f(z) and all of its derivatives are close-to-convex

2122 Zy z2

in D. If zy) >z, and B = 0.01 then calculations show that z) = 2.05 and 2y = 94,9298
satisfy the above inequalities. If z,=2y and B = 0.08 then z; = 4.3478 will satisfy the
above inequalities.

(iv) Let f(z) = z eBz(l-z/zl), where z; = x; + iy;, x; > 3/2 and 0 < B < 0.29. We can

show that f(z) and all of its derivative are close-to-convex in D if

(#42) x; + 2 |y ] (98) < (rugy 2 |2
and
Blx (4-8) + (2-6) [2[% + 22-B) [y, [} < 2x).

When y; > O the region in which z| lies is the shaded region in Figure 4. (The

case y; < 0 is completely symmetric).

. x 2-6p-38%428

2y
101 (14p)2(2-8)

2+8
2(14+8)°

Figure 4.
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As we see from the picture, the smallest value of |zl| is obtained when y; = 0 in which

case the above inequalities reduce to (l1.3).
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