

ON THE COMPUTATION OF THE CLASS NUMBERS OF SOME CUBIC FIELDS

MANNY SCAROWSKY and ABRAHAM BOYARSKY

Department of Mathematics
Loyola Campus
Concordia University
Montreal, Canada H4B 1R6

(Received December 10, 1985)

ABSTRACT. Class numbers are calculated for cubic fields of the form $x^3 + 12Ax - 12 = 0$, $A > 0$, for $1 \leq a \leq 17$, and for some other values of A . These fields have a known unit, which under certain conditions is the fundamental unit, and are important in studying the Diophantine Equation $x^3 + y^3 + z^3 = 3$.

KEY WORDS AND PHRASES. *Class numbers, cubic fields, Diophantine equation.*

1980 AMS SUBJECT CLASSIFICATION CODES. 12A04, 12A50.

1. INTRODUCTION AND SOME THEOREMS.

We consider the cubic fields defined by an equation of the form

$$f(x) = x^3 + 12Ax - 12 = 0, \quad (1.1)$$

where $A > 0$. The field defined by this equation is important because it is related to the Diophantine equation $x^3 + y^3 + z^3 = 3$ when $A = 9a^2$ [1]. Equation (1.1) is clearly irreducible, and as $f(x)$ is increasing, it defines a real cubic field K (with two complex conjugates) with exactly one fundamental unit. Let θ be the real root of (1.1). We write $K = Q(\theta)$. Note that $0 < \theta < 1$. Also $\eta = \frac{\theta^3}{12} = 1 - A\theta$ defines a unit of K . As $0 < \eta < 1$, we have $0 < \frac{1}{A}$. The discriminant of $f(x)$ is $D = -2^4 \cdot 3^3 (16A^3 + 9)$. As $f(x)$ is an Eisenstein polynomial with respect to 3, we have $(3) = q^3$. Also as $\frac{6}{\theta}$ satisfies $x^3 - 36Ax - 18 = 0$, we see that for the same reason $(2) = p^3$, and as $\frac{6}{\theta} = 6A + \frac{\theta^2}{2}$ we see that $\frac{\theta^2}{2} \in O_K$, the ring of integers of K . Thus the discriminant, D , of K , divides $-2^2 \cdot 3^3 (16A^3 + 9)$. We now state:

THEOREM 1. In K , the discriminant $D = \frac{-2^2 \cdot 3^3 (16A^3 + 9)}{q^2}$ where q^2 is the largest square, prime to 3, dividing D . The unit η is never a cube, and if $q=1$ or $q=5$ then η is the fundamental unit except when $A = 1$. The class-number h , of K , is divisible by 3. The primes p_i dividing D (except for 2 and 3) ramify as

$(p_i) = p_i^2 q_i$. A basis for O_K is given by $\theta_0 = 1$, $\theta_1 = \frac{\theta^2}{2}$, $\theta_2 = \frac{16A^2 + 3\theta + 2A\theta^2}{3^i q}$,
 $(\beta^i = (3, A))$.

As the proof is similar to the proof of the corresponding theorem in [1], we omit it, as well as the proof of the following two theorems, also in [1].

THEOREM 2. If the 3-component of the class-group of K is a direct product of cyclic groups of order 3, then

$$x^3 + 12Ax - 12 = 4z^3 \quad (1.2)$$

has no solutions.

Corollary: If $3 \mid h$, then (1.2) has no solutions.

THEOREM 3. If $(h, 2) = 1$, and $q = 1$, then solving $x^3 + 12Ax - 12 = y^2$ is equivalent to solving $-AG^4 - 2G^3H + 3H^4 = -1$ (This has no solutions $(\bmod p)$ for small primes p , e.g. $A = 14$, $p=5$).

2. NUMERICAL COMPUTATIONS.

$$\text{We note that } \lim_{s \rightarrow 1+} \frac{\zeta_K(s)}{\zeta(s)} = \frac{4\pi \log \epsilon \cdot h}{2\sqrt{2^2 \cdot 3^3 (16A^3 + 9)/q^2}} \quad (2.1)$$

where $\epsilon > 1$ is the fundamental unit of K . As in [2], the left-hand side of (2.1) can be expressed as $f = \lim_{p \rightarrow \infty} f_p = \lim_{p \rightarrow \infty} \prod_{p=5}^P f(p)$ where

$$f(p) = \begin{cases} \frac{p}{p-1} & \text{if } p \text{ ramifies } ((p_i) = p_i^2 q_i) \\ \frac{p^2}{p^2 + p + 1} & \text{if } p \text{ remains inert} \\ \frac{p^2}{p^2 - 1} & \text{if } (p) = p q \\ \left(\frac{p}{p-1}\right)^2 & \text{if } p \text{ splits completely} \end{cases}$$

Hence (2.1) implies that approximately,

$$h = \frac{\sqrt{27(16A^3 + 9)}}{\pi \cdot q \cdot \log \epsilon} f_p \quad (2.2)$$

for P sufficiently large.

For Table 1, the product in (2.2) was calculated for $P = P(2027)$, (at intervals of 50), where $P(i)$ indicates the i th prime, and $1 \leq A \leq 36$:

TABLE 1

<u>A</u>	<u>$-D/2^2 \cdot 3^3$</u>	<u>h</u>	<u>A</u>	<u>$-D/2^2 \cdot 3^3$</u>	<u>h</u>
1	5^2	6	19	$7 \cdot 15679$	39
2	137	3	20	$7 \cdot 18287$	72
3	$3^2 \cdot 7^2$	6	21	$3^2 \cdot 5 \cdot 37 \cdot 89$	54
4	1033	6	22	$347 \cdot 491$	36
5	$7^2 \cdot 41$	3	23	194681	72
6	$3^2 \cdot 5 \cdot 7 \cdot 11$	21	24	$3^2 \cdot 7 \cdot 3511$	54

<u>A</u>	<u>-D/2²·3³</u>	<u>h</u>	<u>A</u>	<u>-D/2²·3³</u>	<u>h</u>
7	23·239	9	25	29·37·233	72
8	59·139	18	26	5 ² ·7·1607	15
9	3 ² ·1297	12	27	3 ² ·7·4999	54
10	7·2287	27	28	11·37·863	78
11	5·4261	24	29	359·1087	48
12	3 ² ·7·439	24	30	3 ² ·23·2087	72
13	7·5023	48	31	5·7·13619	162
14	43913	21	32	17·3084	78
15	3 ² ·17·353	36	33	7·82143	114
16	5·13109	36	34	7·89839	87
17	7·11·1021	48	35	686009	75
18	3 ² ·10369	36	36	3 ² ·5·53·313	156

In all the cases above except when $A = 1$ or $A = 5$, $n = \frac{1}{\epsilon}$ is the fundamental unit of K . When $A = 1, 5$, $n = \epsilon^{-2}$. K is a pure cubic field if and only if $A = 1$ or $A = 3$.

Also because of the equivalence of (1.2) with the Diophantine equation

$x^3 + y^3 + z^3 = 3$ when $A = 9a^2$, the class-numbers of K were calculated using (2.2) for $1 \leq a \leq 17$ (Actually Cassels has shown that for solutions of (1.2) to exist in this case, one must have $3|a$ [3]). While most of the values obtained in this way were approximate, perhaps congruence conditions may be used to find them exactly, or perhaps they may be of use in regards to Brauer-Siegel Theorem, so we list them in Table 2. (The Brauer-Siegel Theorem applied here states $\log h \sim \frac{3}{2} \log A - \log q$).

TABLE 2

<u>a</u>	<u>-D/2²·3⁵</u>	<u>I (P(I) is the Ith prime)</u>	<u>h</u>
1	1297	8303	12
2	5·53·313	14903	156
3	5·188957	10803	216
4	5380417	4303	420
5	3557·5693	2201	789 (*)
6	37·241·6781	3003	1410
7	5·30494621	1002	3285
8	5 ³ ·17·29·37·149	1002	873
9	17·40514561	1002	3549
10	181·1361·5261	1002	6999
11	89·25797113	212	6753
12	5·23761·32573	212	-15999
13	5·8821·141833	212	21864

<u>a</u>	<u>$-D/2^2 \cdot 3^5$</u>	<u>I (P(I) is the Ith prime)</u>	<u>h</u>
14	37·263737261	212	10062
15	1193·2381·5197	212	22653
16	35801·607337	212	16764
17	$5^2 \cdot 1251291577$	212	4644

The second column gives the factorization of $-D/2^2 \cdot 3^5$.

(*) For $a \geq 5$, the values of h should be considered as estimates, but are probably accurate within $\frac{1}{2}\%$.

All computations were done at Concordia University, Loyola Campus, on the Cyber 170, Model 835.

ACKNOWLEDGEMENT. The research of Abraham Boyarsky was supported by an NSERC Grant #A9072 and an FCAC grant from the Quebec Department of Education.

REFERENCES

1. SCAROWSKY, M., On units of Certain Cubic Fields and the Diophantine Equation $x^3 + y^3 + z^3 = 3$, Proc. Amer. Soc., 91(3), 1984, 351-356.
2. SHANKS, D., The Simplest Cubic Fields, Math. of Comp., 28(1974), 1137-1152.
3. CASSELS, J.W.S., Personal communication.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk