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ABSTRACT. In this series, this paper is devoted to the study of a functional equation
connected with the characterization of weighted entropy and weighted entropy of degree
B. Here, we find the general solution of the functional equation (2) on an open domain,

without using O-probability and l-probability.
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1. INTRODUCTION. n
(o] s
' = = ey < . <1, =
Let T {r (pl,pz, pn) | o pJ 1 k=21 P 1} and I‘n be the closure
0

of T . Let R = {x eR | x >0}, where R is the set of real numbers. Let
(Q,A,u) be a probability space and let us consider an experiment that is a finite
measurable partition {Al,Az,...,An}, (n >1) of Q. The weighted entropy of such an
experiment is defined by Belis and Guiasu [1] as

1 n

Hn(P,U) = - Z w P log p

k=1

where P = u(Ak) is the objective probability of the event Ak,

n .
P = (pl,pz,...,pn) € l"n and U = (ul,uz,...,un) € R, . The weigthed entropy of
degree B (B € R-{1}) of an experiment is defined by Emptoz [2] as

8 _ 1-8,-1 % B8
B (P,U) = (1-277") kzl u (P -p,) -

The measures Hr];(P,U) satisfy the following functional equation (see Kannappan [3])

n
q.v.* ): f(p,,u,) (1.1)
334, 7
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n m m
£(pyaj ugv.) = Zp.u.-‘z £lay-vy) + jz

3

i=1 =1 i 1

for all P El"n, Qe l"m, ui,vj € IR+. A generalization of (1) is the following:
n m

E 3 rﬁ lf 8 E
Y Y fp.q..u,v,) = p.u.°* ) flq.,v.)+ ) q.v.* ) f(p.,u,), (1.2)
i=1 §=1 3 *3 =1ttt g1 33 4= 33 g 7
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n m
where P eT , Qel, (ul,u ,...,un) eR, (vl,v ,...,vm) €R_, o8B e R-{0,1}. The

2 2
measurable solution of (1.2) for a = 1 was given by Kannappan in [3]. 1In a recent
paper of Kannappan and Sahoo [4], measurable solution of a more general functional

equation than (1.2) was given using the result of this paper. In this paper, we deter-

. . (0] (o] n
. € €
mine the general solution of (1.2) where P I‘n, Q I‘m, (ul,uz, ,un) € ]R+,

(vl,vz,...,vm) € ]R:l, a,8 € R-{0,1} and m,n (fixed and) > 3, on _an open domain.

2. SOLUTION OF (1.2) ON AN OPEN DOMAIN
We need the following result in this sequel.
Result 1 [5]. Let f£,g: ]0,1[ IR be real valued functions and satisfy
n m

m n a m B n
D) fpya;) = izlpi' ) g(qj)+~2 a- L £m) (2.1)

i=1 j=1 j=1 3=1 ¥ i=1

for P € I‘:, Q€ I‘ﬁ, a,B8 € R-{0.1} and m,n (> 3) are arbitrary but fixed integers.

Then the general solutions of (2.1) are given by

£f(p) = A(p) + apu+bp8,

for af B
g(p) = A'(p) + a(pu-p8)+c
and
£(p) = A(p)+D(p)p+dp’,
o for a =8
g(p) = A'(p)+D(p)p +c

where a,b,c,d are arbitrary constants, A,A' are additive functions on R with

A(l) = 0, A'(l1)+mc = 0 and D is a real valued function satisfying
D(pg) = D(p)+D(q), p,q € 10,1[. (2.2)

Now we proceed to determine the general solution of (1.2) on ]10,1[. Let
f: 10,1[ x ]R+-' R be a real valued function and satisfy the functional equation

(1.2) for an arbitrary but fixed pair of positive integers m,n (> 3), for Pe€ I‘:,

Qe I‘x?\, with «,B € R-{0,1}. Letting u, = u for all i =1,2,...,n and

vy =V for j =1,2,...,m in (1.2), we obtain
n m f(p.q.,uv) n m f(q.,v) m n f(p,,u)
R e R R o M
i=1 j=1 i=1 * §=1 j=1 7 i=1

where u,v € 1R+. Putting v = 1 in (2.3), we get

n m f(piq.,u) n m m 8 nf(pi,u)

Ay

L—5—= Ip 1 etapbr Lap I —— (2.4)
i=1 j=1 i=1 * 4=1 j=1 7 i=1

where u,ve R . Putting v =1 in (2.3), we get
n m f(p.q.,u) n m m n f(p,,u)
B

e LN YRPTRN 0 e du
i=1 j=1 i=1 Y y=1 3 9=1 7 4=

for uce R, and Pe ', Q¢ I‘g. For fixed u e ]R+, (2.4) is of the form

(2.1) and hence its general solutions cna be obtained from Result 1.
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First we consider the case o ¥ B. Then from Result 1, we have

£(p,u) = Al(p,u)u+a(u)up°+b(u)upB (2.5)

where a,b: 2R+ =R are real valued functions of u and Al is additive in the first

variable, with Al(l,u) = 0. Letting (2.5) into (2.3), we get
n om nopom g
(a(uv)-a(v)) Z p; Z q.+(b(uv)-b(u)) Z p.* Z q.
i=1 =1 i=1 * =1
(2.6)

no,om g
- (b(v)+a(u)) I p;* L q. =0 .
. i, j
i=1 j=1 n n
Noting a # B, (a # 1, B # 1) equating the coefficients of Z pz and X pg (then
i=1 i=1

m
using the same for z q? and X qg) in (2.6), we get

j=1 3 j=1
a(uv) = a(v), b(uv) = b(u) and b(v) = -a(u).
From these it is easy to see that
a(u) = -b(v) = a, constant (2.7)
for all u,ve R . Now putting (2.7) into (2.5), we get

f(p,u) = Al(p,u)u+au(pa-p8) (2.8)

with Al(l,u) = 0. Again letting (2.8) into (1.2), we get

P : ot
) A (p.g.,u.v)u.v, = A (q.,v,)v, [ up, +
i=1 =1 171731377173 j=1 17373773 jop 11
) fod
+ A (p,,u)u.* ) v.q.. (2.9)
i=1 1771771771 =1 i3
Since A1 is additive in the first variable, by putting u, = 1 and p;, = %-(note
that o # 1), we have
m
A (g.,v )v, = 0. (2.10)
~§1 179577577
J.—
We let v, =v_ ,..., =V =v and v_=v', where v,v'ie R, , into (2.10) and
1 2 m-1 m +
obtain
m-1
Yy =
.X Al(qj,v)v + Al(qm,v v 0.
j=1
Since Al is additive in the first variable, and Al(l,v) = 0, we get
(2.11)

Al(qm,v)v = Al(qm,v')v'

for all q, ¢ 10,1, and v,v' eZR+. From equation (2.11) it is clear that
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Al(x,Y)Y = A(x) (2.12)

where A 1is an additive function with A(1l) = 0. Now using (2.12) in (2.8), we obtain

a
£(p,w) = Alp) + aulp®p®), p € 10,1[, u R, (2.13)
where A is an additive function on R with A(l) =0 and a is an arbitrary

constant.
Next we consider the case a = B. Again the general solution of (2.4) from Result 1

can be obtained as

f(p,u) = qu(p,u) + Dl(p,u)puu + d(u)pau (2.14)

where d: ]R+" R 1is a real valued function of u and A2 is an additive function in

the first variable with Az(l,u) =0 and D, : ]0,1[ xR ~R satisfies (2.2). Putting

.
n

(2.14) into (2.4), we get by equating the coefficient of z p: (note @ # 1)
i=1

m
a

.X [p, (;,u)-p, (q,,1)-d;]a; = 0. (2.15)

j=1

Using u =1 in (2.15), gives dl = 0. Hence (2.15) with d1 = 0, by the use of the

Result 1 of [5], yields

a 1

(Dl(x,u)-Dl(x,l))x = A3(x- m,u) (2.16)
for all x € ]0,1[ and A3 is an additive function in the first variable. Since
D1 satisfies (2.2), we get

1 1 1 a 1

A3(x- m,u)y + A3(y- m,u)x = A3(xy— m,u). (2.17)
Putting y = % and using A3(0,u) =0 in (2.17), we get

A3(x,u) = c1A3(1,u). (2.18)
Since A3 is additive in the first variable we obtain from (2.18) that A3 = 0 for

x € ]10,1[, and all u e]R+. Thus, (2.16) reduces to

Dl(x.u)—Dl(x,l) = 0. (2.19)

From (2.19), we see that D is independent of u, i.e.

1

Dl(x,y) = D(x), x € ]0,1[ (2.20)
and since D1 satisfies (2.2), D also satisfies (2.2). Using (2.20) in (2.14),
we get

f(p,u) = qu(p,u)+D(p)up°+d(u)upu (2.21)

where A2 is additive with Az(l,u) = 0. Letting (2.21) into (2.3), we get

n m
(d(uv)-d(u)-d(v)) ¥ ¥ (piq.>“ =0 (2.22)
i=13=1 J
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I ~~18

for all wu,v € R_. Since (piqj)« # 0 we obtain

ne=13

i=1j=1

d(uv) = d(u) + d(v), u,v € ]R+. (2.23)

Again putting (2.21) into (1.2) and using (2.23) and (2.2), we get

: 3 s
A (p.q.,u.v.)uv, = u.p.* ) A (q.,v,)v, +
i=1 §=1 2771737173713 jop U1 j=1 2733773
o . § (2.24)
+ Yv.g. A_(p,,u)u,.
j=1 Iy 2771771771
Putting u, = 1 and p;, = %- in (2.4), we obtain
m
A_(q.,v,)v, = O. (2.25)
jzl 2793773775

Note that (2.25) is of the form of (2.10) and hence by a similar argument we get
Az(q,u)u = A(q) (2.26)

where A is additive with A(l) = 0. Using (2.26) in (2.21), we obtain
£(p.u) = A(p) + D(plup” + d(u)up® (2.27)
where A is additive on R with A(l1) = 0 and D: ]JO,1[- R, Ad: ]R+ - IR, are

functions satisfying (2.2) and (2.23) respectively.

Thus we have proved the following theorem.

Theorem. Let £: 10,1 x:m+-':m be a real valued function satisfying (1.2) for
arbitrary but fixed pair of m,n (> 3) and «,83 ¢ {0,1}, P F:, Q€ Fz. Then f
is given by (2.13) when a # B and by (2.27) when a = 8.

Corollary. If f is measurable in the Theorem then
o
f(p,u) = a(p —pB) - a # B
and
o o
f(p,u) = bup log p + cp u log u, o = B

where a,b,c are arbitrary constants.

Remark. Because of the occurrence of the parameters «,B as powers, f is

independent of m and n.
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