Internat. J. Math. & Math. Sci. 313
Vol. 9 No. 2 (1986) 313-317

ON THE DISTRIBUTIONAL STIELTJES TRANSFORMATION

D. NIKOLIC — DESPOTOVIC and A. TAKACI

Institute of Mathematics
Novi Sad, Yugoslavia

(Received January 10, 1984 and in revised form June 24, 1985)

ABSTRACT. This paper is concerned with some general theorems on the distributional

Stieltjes transformation. Some Abelian theorems are proved.

K'Y WORDS AND PHRASES. Stieltjes transforms of distributional, asymptotic behavior,
Abelian theorems.

1980 AMS SUBJECT CLASSIFICATION CODE. 44F12, 44A15.

1. REGULARLY VAPYING FUNCTIONS

Throughout the paper, r will denote a positive continuous function

on an interval (X,»), X 2 0, such that the limit

lim 2%%%%

t >
exists for every p > 0. Such functions are called regularly varying func-
tions (r.v.f.) at infinity and it is well known ([ 7] ) that they are of
the form r(t) = t*L(t) for some a € R (called the order or index of r)
and some slowly varying function (s.v.f.) L. Thies means that the functi-
on L : (X,o) » (0,») is continuous and that

vin Ly < 1

for every p > 0.
2. QUASTASYMPTOTIC BEHAVIOUR AT INFINITY RELATED TO r

The quasiasymptotic behaviour (q.a.b.) at infinity of tempered
distributions with suppert in [C,~) (denoted by S;) was defined by Zavi-
jalov (see, for instance, [2]). In this paper we use a somewhat inore
general concept of ¢,a,b, related to a r.v.f. as defined and analysed in
[10].

Definition 1. Let T e ST and r be some r.v.f. . The distribution T has
q.a.b. at infinity related to r if there exists the limit in the sense
of $°
. T(kt) _
Hm ey < e

pProvided that g z g,
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If the order of r is a, then g(t) = A f (t) for some A # O

a+l
(from now on we take A = 1 for simplicity), where
Lo IR _ AN
fa+1(t) = H(t)t"/F(a+l) for a 2 0 and fa+1(t) =D fa+n+1(t)

for a < 0 and n+ta > 0, n € N. As usual, H is the characteristic function
of the interval (0,~»), and D stands for the distributional derivative.

It is easy to see that a continuous function on [0,«) having ordi-
nary asymptotic behaviour of order a > -1 related to r has also q.a.b.
of the same order and conversely. However for a < -1 this may not be
true. This follows from the following

Structural Theorem. ([10]) A distribution T e S has q.a.b. at infinity
related to a r.v.f. r of order at iff there exist a natural number n,

n+a > C, and a continuous function F on R such that

- = P 1 n

F=1TH= fn and F(t) ~ —rm t r(t) as t > o

The proof of this important theorem is analogous to the one of
Theorem I in [2], p. 373.

3. EQUIVALENCE AT INFINITY

The other "asymptotic behaviour" of distributions at infinity
given in the following definition was used in [3], [1] and [ 6]; however,
this notion goes back to Sebastiao e Silva ([8]).

Definition 2. A distribution T e S, is equivalent at infinity to
r(t) = t2 L(t), a ¢ Z_, if for some X° , X 2 X, and some nonnegative
integer n, n+a > 0, there exists a continuous function F on [X“,») such

that T = D" F on (X”,») and

F(t) ~ t" p(t)/(a+1)(a+2)...(a+n) (3.1)

in the ordinary sense as t » =.
It seems to be of interest to compare these two asymptotics; for
our purposes it is enough to prove

Lemma 1. Let T € S: be equivalent at infinity to r(t) = t? L(t) for

a > -1. Then it has g.a.b. of order a related to r.

Proof. We can write T = B + p" F(t), where the supports of B and F are,
respectively, in [0,X”] and [X7,=), X = 1. Let us prove that

s”
1im BB <
k>~ k° L(k)
In fact, for every € > 0 there exists a number n, € No (No = N U {0})
and a continuous function F; on R such that Dn’Fl = B and supp F; ¢ [ -¢,
X“+e]l . For ¢ € S we have
B(kt) F,(t) n; (n;)
—_, P (t)> = < (1) ¢ (t/k) > =
K2 L) Khrarly o
(-1H)™ X re (ny)
= F,(t k 0 3.1
m J 1(t) ¢ (t/k) dt -» ( )

-€
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since n,+a+l 2 a+1 > 0. By supposition F satisfies (3.1), so by the
Structural theorem it has gq.a.b. of order a related to r.

4. STIELTJES TRANSFORM OF DISTRIBUTIONS

For the sake of completness we rewrite the definition of the
distributional Stieltjes transform given in [4]. Let I°(z), z ¢ C, de-
note the subspace of distributions t € S: such that T = D" G for some
n € N and some locally integrable function G on R with support in

[0,») and
flecoy] £ ) g ¢ o,

From now on we take z ¢ R and z > -1, though a complex setting is also
possible (see [4] or [1]). Obviously I°(z) ¢ S: and I°(z;) ¢ I1°(z,) for

-1 < 2z, < 2z,.

Lefinition 3. The Stieltjes transf rm of index z of a distribution
T e I17°(z) is the complex valued function

h(t;+1 Z
(t+s)

where h is an infinitely differentiable function on R such that h(t) = 1

SZ{T}(S) = < T(t), s € C\ (-=,0], (4.1)

in some neighbourhood of [0,») and h(t) = 0 in some interval (-e=,-c),
e > 0.

It is easy to see that (4.1) does not depend on the function h,
so it is usually omitted. It is proved in [5] that SZ{T}(S) is a holo-
morphic function of the complex variable s in the domain C \ (-=,0] pro-
vided that T € I°(z). We shall need the following equality ([5], p. 140)

1
S,4pn{TH(s) = s {D"T}(s) (4.2)
n (z+1)(2+2)...(z+n)

for Te I°(z) and n e N. Observe that T ¢ I7(z) implies T ¢ I°(z+n) and

DT e I°(z).

5 ABELIAN THEOREMS

The initial value type Abelian theorems for the distributional
Stieltjes transform seem to have a satisfactory form. So, we prove only
final value type ones. We use first the following result from [6]:

Theorem 1. Let us suppose that T € 17°(z) is equivalent at infinity to a

regularly varying function r(t) = t® L(t) of order a > -1. Then

SZ(T}(S) ~ Bla+l,z-a) L(s) s%7% as s = ©, 5 € R, (5.1)

provided that z > a > -1.

As usual, B(p,q) stands for the beta function. In view of Lemma 1
we see that this Theorem can be rewritten as
Theorem 1°. Let us suppose that T e S; has q.a.b. of order a > -1 rela-
ted to the r.v.f. r(t) = t® L(t). Then (5.1) holds if z > a > -1.

If T in these two theorems is a continuous function on [0,»), then
T(t) v t L(t) as t > » in the ordinary sense. Issentially, we need such
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’

a "functional" {(i.e. not "distributional") version of them in the fol-

lowing

Abelian Theorem. Let T € S: have ¢.a.b. of ordar a related to a r.v.f.
r(t) = tL(t). Then

i) Te I°(z) for 2z > max(-1,a)
and
i) 5, {T}(s) F%;;%% L(s) s?7%2  as s + =,

staying on the real line.

Remark. Such a statement was proved in [ 3] for r(t) = ti, a > -1 and
ir [4] for o(+) = t2 logjt, a > -1. Further on, r.v.f. were used in [ 6]
(again for a > -1). In all these papers the equivalence at infinity was

a . .
(a - arbitrary re=al num-

used. The q.a.b. was used in [9] for r(t) = a
ter) and now for any r.v.f. . In [1] the results Zrom [3] ere given in

a complex setting; it night be of interest to prove an analogcus state-
ment for our Abelian theorem.

Prool c¢f tke Lbelian thzorem. Part i) follows from the Struc*tural
theorem and the estimate L(t) < Ce t€ for t =ty = to(e) (e in (0,1)).
For ii), we take n > -a and F as in the structural theorem; then

n+a

F(t) ~ Cn t L(t) as t » =

for C_ = 1/F(n+a+1), By Theorem 1° we get

S,en{Fl(s) ~ C_ Bln+at+l,z+n-(n+a)) L(s) s37% as 5 + =,
and from (4.2) we have
SZ{T}(S) N (z2+41)(z+42) ... (z+n) Sz+n{F}(s), so
F(n+a+l) M{z-a) a-z (5.2)
SZ{T}(S) N Cn L(s) s

r(z+1)

This gives the statement ii).

Example. The equivalence at infinity with the distribution
T = ACa,) Fp(t? loglt), ae R, 3 e N (5.3)

for appropriate constant A(a,j) was analysed in [4]: Fp stands for the
finite part. Obviously, T is equivalent at infinity to +2 logjt for
a ¢ Z_; we take A(a,j) = } then. On the other hand, T has q.a.b. of
order a related to t% logjt for a ¢ Z_ and related to A(a,j)ta logj+lt
for a e Z_; we take A(a,j) = (-1)-a-1/((—a—1)!(j+1)) then. Computing the
Stieltjes transform of T we see that it behaves at infinity as the Abe-
lian theorem predicts (see [u4], formulae (2.3) and (2.4)).

Now let -2 < a < -1, Then the distribution S = T + § has q.a.b. of
order -1 related to 1/t and is equivalent at infinity with t? logjt. But
for z > -1

j+1 a-z S-(z+1)

log s s + s-(z+1)

s,{s} = SZ{T}+ s, {8} ~ Ca,j ~

when s + ®, This trivial example (which can be generalized easily) shows
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again that q.a.b. is more appropriate for final value type Abelian theo-

rems for Stieltjes transformation than equivalence at infinity, though

the latter seems more "natural'.

lo.
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