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ABSTRACT. This paper deals with a generalization of the Binary Quasi-Order
Theorem. This generalization involves a more complicated algorithm than (0.2) .

t
Some remarks are made on relative merits of two dual algorithms called the

V-algorithm and the ¢-algorithm. Some illustrative examples are given.
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0. INTRODUCTION

In [HP3] the authors gave an algorithm for computing the quasi-order of 2 mod b
for any udd number b. Here we understand the quasi-order of t mod b, where b,t are
mutually prime positive integers, to be the smallest integer k such that tka +1
modulo b. The algorithm, which also determined whether J(E +1 or tk = -1, was based
on a procedure for folding arbitrarily good approximations to regular star polygons
(with b sides) from straight strips of paper, developed in [HP1,2].

A1l the number-theoretical work which accompanied the evolution of the algorithm
in [HP1,2,3] suggested that it should be possible to generalize the algorithm trom
the case of t = 2 to the case of a general positive integer; all that should be lost
would be the original geometrical significance. However, the generalization propused
and studied in [HP4] had the serious defect that, though it was a generalization of
the Quasi-Order Theorem of (HP3], it was not an algorithm. Let us briefly review the
situation to clarify this point.

We introduced in [HP3] the symbol

a a a
b |1 2 r , (0.1)
2 e kr'

where a, b are odd, a, < b/2, and
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- ] 5 —_
b = a; + 2 a0 1= 1,2,...,r (ar_+1 = al) (u.z)2
Such a symbol always exists for a given b and a = ap, and is uniquely determined by b
and a up to repetition. Then we proved the following theorem in [HP3].

Theorem 0.1 (The Binary Quasi-Order Theorem) If (0.1) is reduced (i.e.

gcd (b,a;) = 1) and contracted (i.e., the symbol involves no repeated a_) then the
quasi-order of 2 mod b is k = 1§1 k., and, in fact, X= (-1)" mod b. R

We chose a proof of this theorem which contained steps of great i1nterest from
the geometric (paper-folding) point of view, but which was not the most direct proof
avarlable. The generalization we proved 1n [HP4] was this:
Theorem 0.2 Suppose b prime to t, ggg»t*a, and suppose a, < b/t. [f the symbol (0.1)
mean, that

k.
—- ] T = -
b = a; + t a, g, 1= 1,2,...,r (ar+1 = al), (O‘Z)t
then, provided (0.1) is reduced and contracted, the quasi-order of t mod b is
r
k= .k and t“= (-1)" mod b.
1=1

In fact, we proved a refinement of this if r is even, since then we did not
require that (0.1) be reduced but merely that gcd (b,al)l(t-l)

However, it is no longer true, if t > 3, that a symbol in the sense of Theorem
0.2 always exists (for example, there is no symbol with t = 3, b = 11, whatever value
we give to al); and much of the discussion in [HP4] centered on specifying criteria
for the existence of a symbol.

In this paper we give a somewhat different generalization of Theorem 0.1, though
it 1s very similar in spirit to Theorem 0.2. This generalization involves a more
complicated algorithm than (0.2)t but 1t has the compensating merit that it is
genuinely an algorithm. The condition a; < b/t is replaced by a; < b/2 (after all,
both are generalizations of the condition a; < b/2, imposed if t = 2!); but now,
given any two positive integers b and t, with b prime to t, and given a = a not
divisible by t, there is always a (modified) symbol (0.1) and a (generalized)
quasi-order theorem holds. This is our Theorem 2.2.

In fact, there are two dual (or mutually inverse) algorithms for generating a
symbol from b and a. We use one (which we call the y-algorithm and which generalizes
(0.2)2) to prove that symbols, suitably modified, always exist (for given b,a), and
the dual algorithm (which we call the ¢-algorithm) to prove the Quasi-Order Theorem.
Qur impression is that the y-algorithm would appeal to an intelligent human being,
while the ¢-algorithm is much better adapted to the computer.

The paper continues with some remarks on the relation of the proof to arguments
given in [HP3,4] and on the relative merits of the two algorithms; and concludes with
some illustrative examples.

1. PRELIMINARY RESULTS

Throughout this section, b,t will be fixed coprime positive integers with t > 2.
The following lemma is quite obvious.

Lemma 1.1 Let T be a set of t consecutive integers, and let a be an arbitrary
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integer. Then the set

{qb+a, q € T}
of t integers runs through the complete set of residues modulo t.

Proposition 1.2 Suppose t ta. Then
(i) if t is odd,.the set of integers {qb+a, 1l <q 5'351; gb-a, 1 <q i%il}
contains precisely one integer divisible by t;
(ii) if t is even, the set of integers {qb+a, 1<q< ; -1; gb-a, 1< g<

N+

}

contains precisely one integer divisible by t.

Proof We will be content to prove case (i). By Lemma 1.1, the set of integers
{qb+a, - E%l <q E_E%l} contains exactly one integer q0b+a divisible by t; but Qq #0
since tra. 1f 9 > 0, then this is the integer required by our proposition, since if
tl(qb-a) then tl(-qb+a). If q, < 0, then -(qob+a) is the integer required by our
proposition.

Let us write

G + (-1)%a, € = 0or 1, (1.1)
for the integer described in Proposition 1.2; thus
1<q<5Bb if tis odd
1<gc< %,_ 1 if t1sevenande =0 (1.2)
- t . ~
12923 if t 1s even and € =1

rurther, suppose b > 3 and let S be the set of positive integers a such that tta and
a< b/2. For aes, it is plain from (1.2) that the integer (1.1) is always
positive, so that there exists a maximal k, with k > 1, such that

k

aqb + (-l)Ea =ta', ae€S,a >0. (1.3)

Since k is maximal, tla'. We claim more, namely,
Theorem 1.3 The function a» a' is a permutation ¢ of the set S.
Proof Assume first that t is odd. Then k > 1 and tar < Eil b+ = %?, so that

a' < b/2 and so a'€ S. Thus ar» a' is a function :S > S. It only remains to show

that ¢ is surjective, since S is a finite set.

let a' € S and let k be minimal such that t<a’ > b/2. Then k > 1 so that
tka' > b/2. In fact, tka' # % b for any integer n; for if tka' = % b, then
nb = Ztka', b|2tka‘, bl2a', contradicting 0 < a' < b/2. Thus tk
expressed as

t“a' = gb + (-1)%a, € = 0,1, 0<a<b/2, q> 1. (1.4)

We claim that q 5_551; for if q z_i%l, then tka' > E%l-b - % = %?, so that

tla s b/2, contradicting the minimality of k. It is now plain that tfa; for if
tla, then, from (1.4), tlgb, tlq, contradicting 1 < q < Eil. Thus a € S, and
Proposition 1.2(i), together with (1.4), ensures that y(a) = a'.

A small modification is needed if t is even. Again, in (1.3), k > 1 and

tka' < % b so that a' € S, and we have a function ¢:S » S. To show that { is

a' may be uniquely
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surjective we proceed as above as far as (1.4). We now claim that

q<y-1life=0; q<qife=1. (1.5)

For if € = 0 and q > t/2, then, from (1.4), tka' > %-b, contradicting the minimality
. t k., t b _ t+l .

of k; and if € = 1 and q > g+ 1, then t"a' > (7 + g b - 7= —%—»b, again

contradicting the minimality of k. Thus (1.5) is established. Once more we conclude
that tfa; for if tla, then tlq, and q > 1 is constrained by (1.5). We involve
Proposition 1.2(11), together with (1.4), to complete the proof of the theorem.
Remark If t = 2, then the integer described in Proposition 1.2(ii) is simply b-a.
Thus (1.3) yields in this case the rule

b-a= 2k | (1.6)

which was precisely the basis of the algorithm in Theorem 0.1; see (0.2)2. Thus
(1.3) provides a generalization of that basis.
2. THE GENERAL QUASI-ORDER ALGORITHM

Let b and t be any two coprime positive integers; define S as in
Section 1. Since y:S > S is a permutation, we may start with any a € S and we will
get a cycle

a, Wa), ¥¥(a), ..., V(a) = a .

Let r be the strict period of the cycle. Then we may write a t-symbol (with a = a)

‘al 3, a,
b lkl Ky ook, (2.1)
81 62 Er
where, as in (1.3),
~ ei ki
qib + (-1) a; = t a0 17 1,2,...,r, a1 7 A 81 =0QQor1l,

(2.2)

ki > 1, and ai is constrained as in (1.2) .

Note that (2.1) is contracted, in the sense that there is no repeat among the ai's.
We will not systematically develop the properties of the symbol (2.1) as in [HP3],
but will proceed as directly as possible to the main theorem. We first prove an easy
lemma.

Lemma 2.1 In the symbol (2.1), gcd (b,ai) is independent of i.

Proof This follows immediately from (2.2) and the fact that b,t are mutually prime.

We call the symbol (2.1) reduced if gcd (b,ai) = 1; notice that this is a change
r r
of terminology from [HP3,4]. Now, in (2.1), let k = § ki’ €= ) €5- We prove
i=1 i=1
Theorem 2.2 (The General Quasi-order Algorithm) Let b and t be any two coprime

positive integers. Let the symbol (2.1) be contracted and reduced. Then k is the
quasi-order of t mod b. In fact,

tk = (-1)° modulo b. (2.3)

Proof In the course of proving Theorem 1.3, we found an explicit form for ¢, the
inverse of ¥:S > S. Thus ¢(a') = a, where k is minimal such that tka' > b/2 and
(1.4) holds; moreover, the value of q in (1.4) is constrained exactly as in (1.2).
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We now concentrate on the ¢-algorithm, that is, we make (1.4) the fundamental rule
for generating a symbol and write (2.1) in 'skew-reverse' notation as

Cr Cr-l Cz Cl
b lr-l 4r-2 T ll lr
S e R T

(If one were to regard ¢, rather thany, as the fundamental algorithm, it would be
natural to introduce a change in the format of our t-symbol to relate it better to

(24)r) Then Ci ; ar+1-1'; ["I = kr_.ia 1<, lr = kl"; ni = er_i-v i<r, nr =€r' If
I - ) Ii’ n= I Nis then we must prove that £ is the quasi-order of t mod b,
i=1 i=1
and that tl = (-1)" modulo b. Our defining equation (1.4) now reads
'y n

i i

t ¢ = qib + (-1) ‘¢ i=1,2,...,r (cr+1 = cl) . (2.4)

i+l
Consider the sequence of (L+1) integers Sj < b/2 ,
11—1 12-1 2 -1

{cl, teg, .ot C» €y tCpy iy t Cos voes Cpy EC, oey t r

re r) crt cl}

Then s. . = +ts. modulo b, for all j. Indeed, Sj+1 = ts. modulo b unless

J J
Sj =t Ci» s
follows that

341 = Cisl and n; = 1; in that case, Sj+ls -tsj modulo b. It

¢, = (-1)ntlc1 modulo b . (2.5)

We claim that Sj # +c, modulo b unless j = 1 or L+ 1. For ifs.= 3 modulo b,
then, since 0 < Sj’ < < b/2, we must have sj =cq- This is impossible if Sj = t"ci,
n>1, since t*cl. It is also impossiblie if Sj = Cy (unless i = 1) since our symbol
is contracted. Again if sj = - modulo b, then b|(sj + CI) but 0 < Sj +Cp < b,
which is an obvious contradiction. Thus 4 is the minimum m such that

m. =
t'c; = #c; modulo b.

But since, by Lemma 2.1, b, c, are mutually prime, it follows that L is the minimum m
such that t"= +1 modulo b and, from (2.5), that tl = (-1)n modulo b. This completes
the proof.
Remarks (a) If t = 2, then € = 1 for all i, so thate€ =r. Thus
Theorem 2.2 does generalize the binary quasi-order theorem. O0f course, the proof
given here applies in the special case -- and, indeed, it then reduces to an argument
equivalent to that shown to us by Gerald Preston.

(b) Theorem 0.2 may also be proved along the lines of our proof of Theorem 2.2.
However, as we mentioned, that theorem had a refinement which our proof does not
yield. Namely, it was shown that, if

is a t-symbol in the sense of [HP4], that is, satisfying (0.2)t, if it is contracted,
and if r is even and gcd (b,ai)|(t-1), then k is the quasi-order of t modulo b. Our
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line of proof of Theorem 2.2 would enable us to conclude that, if 0 < < k inen
t™ % +1 modulo b. But we would need to depend on the argument given in [HP4] to
conclaﬁe that, in fact, t“= 1 modulo b.

(c) We have two dual algorithms for determining the quasi-order of t modulo b,
which we are calling the.y-algorithm and the @-algorithm; it is a matter of taste and
convenience which is used in any particular case. For t = 2, the y-algorithm seems
simpler to handle -- and has, moreover, the merit of being intimately related to the
paper-folding algorithm for constructing regular star polygons. For t> 3 it may
well be that the ¢-algorithm is sometimes simpler to handle. The ¢-algorithm made no
appearance in [HP3] and only appeared in [HP4] to prove the Order Theorem [HP4;
Theorem 3.3].

3. EXAMPLES

It is 11lustrative to compare the V-algorithm used in this paper with the
‘non-algorithm' based on (O’Z)t' Let us take the simplest example, t = 3. Then, as
already stated, we do not always get a symbol in the sense of [HP4] for given b,a.
Indeed, with b = 11, a = ay = 2, we have immediately a, = 1 since 11 = 2 + 32.1; but
then we are trapped in a hopeless spin! If we use the V-algorithmV(a) = a', given
by (1.3), then we must take g = 1, so we simply have to decide, and record, at each
sﬁage whether to take € = 0 or € = 1; thus our 3-symbol (see (2.1)) is

2 1 4 5
1112 1 1 1
1 0 01

We conclude that the quasi-order of 3 mod 11 is 5 and that 35 = +1 mod 11. As a

second example of a 3-symbol, let us take b = 25, a = 1; then our 3-symbol is
1 811 4 7 2
2511 1 2 1 2 3

1 00110

We conclude that the quasi-order of 3 mod 25 is 10 and that 3105 -1 mod 25.
In these two cases our algorithm yields a cyclic permutation of the entire
subset of the set S (see Section 1) consisting of those a prime to b; this, however,

is not necessary. With b = 80 and t = 3, we get the four reduced 3-symbols
1 729 17 11 23 19 13 31 37

, 80 |1 1 2

0 01 1 1 10 0 00

Of course, it is quite obvious that the quasi-order of 3 mod 80 is 4 and
34 = +1 mod 80. Perhaps less obvious is the following example of two 1l-symbols,
with b = 25, which show that the quasi-order of 11 mod 25 is 5 and lfsa +1 mod 25.

1 9 6 4 2 712 8 3
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Notice that the w-algorithm is really very easy to execute by hand, even without the
use of a calculator. The 9-algorithm is, however, more mechanical. Notice, too,
that, in executing the V-algorithm we are concerned with the residues mod t, while
our conclusions are concerned with residues mod b.

We close with two "classical" applications of our algorithm in case t = 2; of
course, as explained in Remark (a) of Section 3, it is then unnecessary to display
the Ei’ since they are always 1. First the symbol

111 3 5 9 7
23
1 2211 4

shows that the quasi-order of 2 mod 23 is 11 and that 211 =2 1 mod 23. Thus the
Mersenne number 211 - 1 is not prime.
Finally, the coup de grdce! The symbol

1 5 159 241 25 77 141 125 129
641

7 2 1 4 3 2 2 2 9

shows that the quasi-order of 2 mod 641 is 32 and that 232 = -] mod 641. Thus the
5
Fermat number 22 + 1 is not prime. (Incidentally, as explained in [HP3], the symbol

contains the information from which the complementary factor 6,700,417 may be derived
-- the calculation should take about 3} minutes by hand!)

Added in proof The interest in this problem among computer scientists is attested
py the reference [5].
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