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ABSTRACT. This brief report describes some new finite difference methods of

order 2 and 4 for computing eigenvalues of a two point boundary value problem
associated with a fourth order linear differential equation y(4) +(O(x) - A\q(x)y = 0.
These methods are derived from the formula
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Numerical results are included to demonstrate practical usefulness of our methods.
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1. INTRODUCTION

We shall consider the fourth order linear differential equation

4

v+ o a0l = 0 (1.1)
associated with one of the following pairs of homogeneous boundary conditions:

0

y(b) = y'(b)
y() = y"(b) =0 (1.2)

(¢) y(a) = y'(a) = y"(b) = y"'(b) = 0

(a) y(a) = y'(a)

() y(a) = y"(a)

Such boundary value problems occur frequently in applied mathematics, engineering and
modern physics, see [1,2,3]. In (1.1), the functions p(x) , q(x) € C[a,b] and they

satisfy the conditions

p(x) 20, q(x) >0, x € [a,b] . (1.3)
Recently, Chawla and Katti [4] have developed a finite difference method of order
2 for computing approximate values of A for a boundary value problem (l.1)-(l.2a).
For the same problem, a fourth order method was developed by Chawla [5] which
leads to a generalized seven-band symmetric matrix eigenvalue problem.

The purpose of this note is to present some new finite difference methods for

computing approximate values of X for the boundary value problems (1.1)-(1.2b)
and (1.1)-(1.2c). These methods lead to generalized five-band and seven-band

symmetric matrix eigenvaluc problem and provide O(hz) and O(h4) -convergent
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approximations for the cigenvalues.

2. A SECOND ORDER METHOD FOR COMPUTING A FOR (1.1) and (1.2b)

For a positive integer N 2 4, let h = (b-a)/(N+1) and X, = a + ih ,
i = 0(1)N + 1 . We shall designate Yy = y(xi) » Py = p(xi) and q; = q(xi). The
boundary value problem (1.1) and (1.2b) is discretized by the difference equations

4 1 4 4
(a) 'ZYO"SYI"‘)’Z*YB:hy""h['ﬁy()*)';)]’tl’

) &'y = h4y§4) s, i= 20N -1, (2.1

_ .2 4. (4) 1 (4
() yy_p = WNCr Py T Wy TRty N
Note that the truncation errors ti , 1= 1(1)N, are

5@ L g g

360
_) 16 (0 o
tl - 6 h y (51) > gi € (xi-2’xi+2) s 1 = Z(I)N'l (2-2)
59 6 (6)
360 ! (&) » &y € (xy_,b)

The formula 2.1(b) is obtained from the well-known central difference formula

h4y£4) Spet o L6, 7 g8 41 8

6 740 7560 © * - 1vg o (2.3)

i=2,3,4,...)

The discretizations 2.1(a) and 2.1(c) are introduced so that the resulting coefficient
matrix in (2.1) is a five-band symmetric matrix. The system of linear equations

(2.1) can be written in matrix form
(32 « 1%P)Y = anfQr + t (2.4)

where J2 is a symmetric five-band matrix and J = (jrs) is a tridiagonal matrix

such that

2, r=s
Jo.o=4-1, Jr-s|=1 (2.5)

0, otherwise.
The matrices P and Q are diagonal matrices
P = diag[p; p, - - - pyJ » Q= diaglq; a, . . . q]
and

T T

Y= lyy vy ooyl st =t t

R N]
Thus, our method for computing approximations A for A of (1.1)-(1.2b) can be

expressed as a generalized five-band symmetric matrix eigenvalue problem
(3% + 1*P)Y = Qv . (2.6)

In fact, the matrix J2 is a positive definite matrix and hence for any step-size
h > 0 , the approximations A for X by (2.6) are real and positive for all
p(x) 20 and q(x) > 0 . That our method provides O(hz) convervent approximations

A for X can be established following Grigorieft [6]. We omit the details of
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convergence proof for brevity.

3. A FOURTH ORDER METHOD
The boundary value problem (1.1)-(1.2b) is now discretized by the following

difference equations

3
(a) -17yq + 44y, - 38y, + 12y, - y, = -8h%y" h[3 v 6y§4‘] . £h6yé6) .

- = h2yn
(b) IOyO - 38yl + 56y2 - 39y3 + 12y4 Yg = h Yo

+ n [12 (4) + 6y (4)] + 336 h6y(“ + .,
() (68% - <s6)yi - 6h4yi(4) B Z—O hgyi(a) Y i=3()N-2; (3.1)

(d) “YN-4a +12yN .3 39yN 2t 56yN 1 38yN + 10yN vl

y® 1L L6 (6)

- (4) 1
hyN+l h[6y 1 P12 N1 T 380 M N

(e) Yozt 12yN o 38yN 1t 44yN - 17yN .1 = 8h yN ‘1

+ h4[6v§4) + %— (4)1] + 13 h6y(6) o

As in [7], the derivation of (3.1c) is immediate from (2.3), on truncating the

infinite series on the right of equality sign after the two terms. The additional
difference equations (3.la, b, d, e) are chosen so that the resulting matrix associated
with the system of linear equations in (3.1) is a seven-band symmetric matrix. It
turns out that our method for computing approximations A for A of (1.1)-(1.2b) can

be expressed as a generalised seven-band symmetric matrix eigenvalue problem

[(63% + 3% + 6h*PIY = eanqy . (3.2)

The matrix 6J2 + J3 is a positive definite matrix and hence for any step-size

h > 0 , the approximations A for A by (3.2) are real and positive for all
p(x) 2 0 and q(x) > 0. As before, it follows from the results of Grigorieff (1275)

that our present method provides O(h4) -convergent approximations A for A .
4. METHODS FOR COMPUTING A FOR (1.1)-(1.2c)
For this section, let h = (b-a)/N and X; = a+ ih , i = 0(1)N. The boundary

value problem (1.1)-(1.2c) is discretized by the following scheme

(a) -4y, + Ty, -4y, tyg = Zhyb + h4 (4) + ( "' + ...,
() sy, = h4"1(4) 5 h4y(6)(5i) R RSPV
i=2(1)N-2, (4.1)
(€) yy_3-4y_p*SYy_p - y=-h y" * %h4yr54-)1
N R I
(@ vy, -2yt = iy -ty e oty e d Sy L

This system can be written in matrix form
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(4.2)
(A + h¥pyy = anfqy 4t
and our method for computing approximation A for A of (1.1)-(1.2c) can be
written as a generalized five-band symmetric matrix eigenvalue problem
(A + n*myy = miqy (4.3)
where
7 -4 1 ]
-4 6 -4 1
1 -4 6 -4 1
A=1]0 1 -4 6 -4 1 (4.4)

It can be established (see Appendix A) that the matrix A is a positive definite
matrix and the approximations A for A by (4.3) are O(hz) -convergent.
A third order method is obtained on discretizing (1.1)-(1l.2c) by the difference

equations

(a) -45y0 + 76yl - 42y2 + 12y3 - y4 = 24hyb

e nf oy (D e oy 3y d (O
7
(b) 3— Yo - 42y, + ;13 Y, - 39y5 + 12y, -y = -3hy}
. h (4 (4) . 6),(4)) L LS (s) , (_2_4_ heyés) N
(© (66" - 6%y, = 6h4y§4) - & hayi(s) .., i=3()N-3, (4.5)

2
(A -yy_g ¥ 12y 4 - 39"N-3 * 84yt 3yt 8yy T chiyy

4.(4) 5.5 (5) ,

+ 2h y"' + h YNZ2 * (- g-h YN L),

- 2.
(e) Yn-a4* 12yN_ 3" 34yN_ 2 * 36yN 1 13yN = - 4h YN

26 4. (4)

3 N -

5 (5)

~andyy s L+ Grdy D

- - = Zn_ "
() =yy_g * 8y - By * Oy = SRy - vy

+ = h

17 .4 (4) 23 .6 (6)
T A (O R A C NI )

This third order method gives rise to a generalized seven-band symmetric matrix

eigenvalue problem
4.~ 4 ~
(B + h'P)y = Ah Qy (4.6)

where
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76  -42 12 -1
-42 %—2 -39 12 -1
12 -39 56 -39 12 -1
B= |-1 12 -39 56 -39 12 -1
"I 12 L3 Tse - 8
-1 12 -3% 36 -13
-1 8 -13 6

5. NUNEZRICAL ILLUSTRATIONS
To illustrate our methods for order 2 and 4 for the approximation
(1.2b), '7e consider the eigenvalue problem
4 X
y()-——(‘—y=0 ;
(1+x)

y(0) = y"(0) = y(b) = y"(b) =0

The smallest eigenvalues A(b) for b = 1,2 are

A(1) = 416.324,564,86. ..

and A(2) = 646.269,207,... respectively. We computed approximations
A(2) by our methods (2.1) and (3.1) applied to the problem (5.1) for
m = 3(1)6. The corresponding errors |1 - igg; are shown in Table I.

141

(4.7)
A of (1.1)-

(5.1)
A(1l) and
=

It is easily

verified that our methods based on finite difference approximations (2.1) and (3.1)

do provide O(hz) and 0(h)4— convergent approximations for the smallest eigenvalue

of (5.1).
TABLE I
A(b)
b h Error |1 - based on the method
A(b)
(2.1) (3.1)
1 1/8 2.68-2% 1.09-4
1/16 6.76-3 8.34-6
1/32 1.69-3 5.46-7
1/64 4.23-4 3.29-8
2 1/8 2.61-2 2.50-3
1/16 7.13-3 1.70-4
1/32 1.82-3 1.08-5
1/64 4.58-4 6.39-7

*We write 2.68-2 for 2.68 x 1072 .

We now illustrate our methods for the approximation of X of (1.1)-(1.2c) by

approximating the value of the smallesteigenvalue A satisfying

1
(4) X

y e faedy - ——) y-o
(1+x)

y(0) = y'(0) = Vv'(1) = V') =0 ,

(5.2)
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for h=2"",

A

where A = 135.320,349,281,57.... We list the errors 11 -1
A

based on the finite

m = 3,4,5,6. It is readily verified that the relative e

: rors 1
difference scheme (4.1) are 0(h“)- convergent and likewise the relative errors

based on the scheme (4.5) are 0(h3)— convergent.

TABLE I1
A
h E -1
rror 1 A based on methods
1
(4.1) (4.5)
1/8 1.40-2 2.80-3
1/16 3.41-3 3.50-4
1/32 8.41-4 4.31-5
1/64 2.08-4 4.78-6
1/128 5.13-5
APPENDIX A

It is well known that the tridiagonal matrix J introduced in (2.4) is a
positive definite matrix. it follows that the matrices J and (6J2-+J3) introduced
in equations (2.6) and (3.2) respectively are also positive definite matrices. In
order to establish that the real symmetric matrix A given by (4.4) is a positive

definite matrix, it suffices to prove that the (N-1) principal minors

1 5 -2 6 -4 1 6 -4 1
b ’ ’ oo ’
-2 1 -4 5 =2 -4 6 -4 1
1 -2 1 1 -4 6 -4 1
1 -4 6 -4 1
1 -4 5 =2
1 -2 1
are each equal to 1 and |A]| = 2
ACKNOWLEDGEMENT .

This work was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada. We also acknowledge the assistance of

Mr. Naiyer A. Usmani for making numerical calculations presented in Tables I and II.

REFERENCES

1. FOX, L. The numerical solution of two-point boundary value problems in ordinary
differential equation, Oxford University Press, Oxford, 1957.

2. HILDEBRAND, F.B. Advance Calculus for Applications, Prentice-Hall Inc.,
Inglewood Cliffs, N.J., 1964.

3. REISS, E.L. CALLEGARI, A.J. and AHLUWALIA, D.S. Ordinary Differential
Equations with Applicatins, Holt, Rinhart and Winston, New York, 1976.

4. CHAWLA, M.M. and KATTI, C.P. A new symmetric five-diagonal finite difference
method for computing eigenvalues of fourth-order two-point boundary value
problem, J. Comput. and Appl. Math., 8 (1982), 135-136.




FINITE DIFFERENCE METHODS FOR COMPUTING EIGENVALUES 143

CHAWLA, M.M. A new fourth-order finite difference method for computing eigen-
values of fourth-order two-point boundary value problem, IMA Journal of
Numerical Analysis, 3 (1983), 291-293.

GRIGORIEFF, R.D. Diskrete Approximation von Eigenwertproblemen II, Number.
Math., 24 (1975), 415-433.

USMANI, R.A. On a class of numerical integration methods for a problem of
plate deflection theory, Internat. J. Comput. Math., 11 (1982), 305-318.

USMANI, R.A. Finite difference methods for a certain two point boundary
value problem, Indian J. Pure Appl. Math., 14 (1983), 398-4l1l.




Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

December 1, 2008
March 1, 2009

‘ Manuscript Due

‘ First Round of Reviews

June 1, 2009

‘ Publication Date

Guest Editors

Edson Denis Leonel, Departamento de Estatistica,
Matemadtica Aplicada e Computagdo, Instituto de
Geociéncias e Ciéncias Exatas, Universidade Estadual
Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro,
SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

