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ABSTRACT. For the function ¥ = ¥),, defined by °{"w(n)x“ = x °xli’ (1-x2ny12 (Ix]<1),

the author derives two simple formulas. The simpler of these two formulas is expressed

solely in terms of the well-known sum-of-divisors function.
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1. INTRODUCTION.
Following Ramanujan [4,p. 155] we define for each positive divisor a of 24 an
arithmetical function wa as follows:

?w(,m)x“ = x‘1’11° (1-x24n/oya, (1.1)

an identity which is valid for each complex number x such that |x| < 1. Of course, W24= T

In this paper we are specifically concerned with
V12(=¥ for simplicity). As a matter of fact, we derive two explicit formulas for y.

the celebrated Ramanujan tau fuction.

Since these formulas involve the sum-of-divisors function and the counting function for
sums of eight squares, we need the following definition.

Definition. (i) For each positive integer n, o(n) denotes the sum of all posi-
tive divisors of n. (ii) for each nonnegative integern, r (n) denotes the cardinality

of the set

k 2 2 2
{(xl,xz,...,xk) e Z% |n = X] + x5 Foot xk}

k an arbitrary positive integer.
We can now state our main result.
Theorem 1. For each nonnegative integer m,

¥(2mt+1) =1I£0 (-Dirg(i)o(2m-21+1), (1.2)

v(2m+2) = 0. (1.3)

In section 2 we prove theorem 1, and thereafter prove a corollary which gives a
formula expressing ¥ solely in terms of o.

2. PROOF OF THEOREM 1. Our proof requires the following three identities, each of which

is valid for each complex numbar .. zucu <hot x| < 1.

w 2.1)
I (14+x™) (1-x22"1y = 1 ¢
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© 2
(1-x™) (1-x2771) = 1 (0 (2.2)

—=18

(1-x2D) (14x™) = T xn(nF1)/2 (2.3)

—1g
o

Identity (2.1) is due to Euler, while (2.2) and (2.3) are due to Gauss. For proofs see
[3, pp. 277-284]. We also need a fourth identity which the author has not been able to
locate in the literature. This we here record in the following lemma.

LEMMA. For each complex number x such that [x‘ <1,

© 4 o

(z <D /23% 5o b1y x® (2.4)
0 0

Proof: Here we need the following two identities, stated and proved in (1, p. 313].

© © 2 ®

T(1-x2M) 2 (142071 = {3 x207)2 4 (3 x2m(mtl);2

1 -0 -0

® @ 2 ®©

?(1—x2n)2(1-x2“-1)4 = {3 x2m }2 - x{z X2m(m+l)}2

We square these identities, add the resulting identities, and utilize the fact that the

fourth power of the right side of (2.2) generates (—1)“r4(n), to write:

21 r, (20)x%" Loy + I (DM, ()"

n
N
[N

: r4(n)x2n + sz{g x2m(m+l) y4,

whence
x2{L x2m(mtl)p4 (EJ[rA(Zn)—rl'(n)]x2n

-

g[r4(4m)—r4(2m)]th

+ ey (4me2) - r, (2m+1) Jx4m+2

%[240(2m+1) — 80 (2mt1)x4mF2

24 g o (2m+1) x4mt2

Here, we've made use of Jacobi's formula for r,(n). Now, cancelling 2%x% and subsequent-

1/4

ly letting x + x , we obtain (2.4).

Continuing with the proof of theorem 1, we use (2.1) to rewrite (2.3) as

(1xP) (1-x20-1)=2 = § (n(nt1)/2
1

o

We then raise the identity to the fourth power, and multiply the resulting identity by
the eighth power of identity (2.2) to get

Y @ 2 ©
H(l—xn)lz = (I (-x)P )8 {g xn(n+l)/2}4
1 Zw

I o8

(-Dirg()xl . I o(2j+1)xd
i=0 j=0

1
™8

L (-1 rg(i)o(2n-2i+1).
i=0

n=0
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In the foregoing we then let x > xr, and multiply the resulting identity by x to get

z P(n)x? = x.1 (1-x2my12

g m .
=1 ™15 D (i)o(2m-2i+1)
0 0
Comparing coefficients of x"  we thus prove our theorem.

By appeal to the well-known formula for rg, viz.,

rg(m) = 16(-D" 2 (-D%3, nezt
d|n
(e.g., see [3, p. 314]), we eliminate rg from (1.2) as follows:
m
Y(2mtl) = o(2mtl) + 160210(2m—21+1)dT' (-1)d43
i= i

In order to extend the inner sum over all d in the range 1,2,...,1i we define €(i,d)

to be 1, if d divides i, to be 0, otherwise. Hence,

V(2mtl) = o(2m+l) + 16,§

L e (me2itlre(1.d)d3
f (-1)%0(2m=-2i+1)e(i,d)d
I d

1d=1

o(2m+l) + 16
d

k=]
—

Dd BT i -
(-1)- d izd e(i,d)o(2m=-2i+1)

]

m
oCm+tl) + 16 L (-1D943 § o(2m-2kd+1)
d=1 k=1

The upper limit of summation of the sum indexed by k 1is naturally [m/d], the integral
part of m/d. Thus, we have proved the following

COROLLARY. For each nonnegative integer m,
m 4,3 m/d
Y(2mt+l) = o(2m+l) + 16dZ1 (-1)"d kzl 0(2m-2kd+1),

CONCLUDING REMARKS. According to Hardy, Ramanujan conjectured that each of the
Y, (for o dividing 24) is multiplicative; e.g., see [2, p. 184]. These conjectures
were later confirmed by L. J. Mordell. Owing to classical identities of Euler and
Jacobi, wl and w3 are trivially defined. Ramanujan himself deduced formulas for wz,

W4: ¢6 and Ws-
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