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ABSTRACT. Let B(a) be the class of normalised Bazilevic functions of type o« > 0

with respect to the starlike function g. Let Bl(a) be the subclass of B(a) when

g(z) = z, Distortion theorems and coefficient estimates are obtained for functions

belonging to Bl(a).
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1. INTRODUCTION.
Let S be the class of normalised functions f which are regular and univalent

in the unit disc D = {z : [z|<l}. Let s*

be the subclass of S consisting of
functions which are starlike, and denote by P, the class of functions which are regu-

lar in D and satisfy there the conditions p(0) = 1, Re p(z) > 0 for p € P,

Bazilevig [1] showed that if o« and B are real numbers, with o > 0, then func-

tions f, regular in D, and having the representation

a iB—ldt]l/a+iB

£(z) = [ (a+iB) 62 p(0)g(e)t (1.1)

for g ¢ S*, peP and z e D, also form a subclass of S , denoted by B(a,B), which
contains both S* and the class of close-to-convex functions. (Powers in (l.1) are
principal values). When § = 0, we write B(a,B) = B(a). Zamorski [2] and the author
[3] gave proofs of the Bieberbach conjecture for f ¢ B(1/N), N a positive integer,
and more recently Leach [4] has shown that the conjecture is true for f € B(a),

0<a 1.

Singh [5] considered the subclass Bl(u) of B(a), obtained by taking the star-

like function g(z) = z , and gave sharp estimates for the modules of the coefficients

a,. ag, and where for z € D,

aA,
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f(z) =z + ?2 anzn ceeee . (1.2)
n=

We note that Bl(l) is the subclass of S which consists of functions f for which

Re f'(z) >0 for z e D [6].

In this paper, we shall obtain some distortion theorems for f ¢ Bl(u) and give

sharp estimates for the coefficients a in (2) when f € Bl(l/N), N 1is a positive
integer.

2. DISTORTION THEOREMS.

THEOREM 1. Let f € Bl(a) and be given by (1.2). Then with 2z = reie, 0<sr<l1,
1 1
@ o, s @] < ',
(ii) If 0 <a <1,
la ]
a-1 a 1- a=1 o 1+
R R R =+
and if o 21
1o la
a-1 a 1-r ' a-1 a l+r
) Y s @] s Y 1
where
_ r a-1 l4p
Q,(r) =0 J(; P (G=;)des
and

a=-1

- Ip
Qz(r) =a 6 o (l+p)dp.

Equality holds in all cases for the function f¢ , defined by

- z i
f¢(z) = (a é @ l(l+te )dt)l/a

) ceees (2.1)

l-te
where ¢ = 0 or .

PROOF .
(i) Taking B = 0 and g(z) = z in (1l.1), it follows that f satisfies the
equation

27 ) = £ pe) .. 2.2)

for z e D and p e P, Thus

z

£(2)* = o 6 o (e)ae,

and since [p(z)] < %;5 for z e D [7], we have at once |f(z)] < Ql(r)l/a.

To obtain the left-hand inequality in (i), we observe that, since Re p(z) > O

for z € D, Re p(z) = %:E [5], and so from (2.2)
+r
d 3 a=-1 1-r
‘E;{f(z)] 2 ar (l+r) ceeees . (2.3)

Now let z)s [zll = r be chosen so that |f(zl)a| < lf(z)al for all z with |z| =r.
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Then, writing w = fl(z)a, it follows that the line segment A from w =0 to

w = f(zl)a lies entirely in the image of D. Let L be the pre-image of A , then
by (2.3) we have

|f(zl)]a = fxldw| =

[ b

dw
|;;;||dzl

-1

r o=l l-p
) 6 o (1+p)dp Qz(r),

which is the left-hand inequality in (i).
(ii) The proof follows at once from (2.2) and (i) on noting that for p € P,

1-r
1+r

1+r
1-r

2 |p(2)] = [71.

Equality is attained in (i) for fO and in (ii) for fo when 0 <a <1 and for
f when a 2 1.
Ll

We remark that as a » 0, the results of Theorem 1 should in some way correspond
to the classical distortion theorems for regular starlike (univalent) functions [7].
The following shows that the bounds in Theorem 1 are asymptotic to the classical dis-
tortion theorems as o > 0 .,

THEOREM 2. Let Ql(r) and Qz(r) be defined as in Theorem l. Then for 0 <r <1,

as a >0

lo _ _x
(1-n?%

/o . r
(l—r)2 ’

(iii) Q(r) ~ Qz(r) ~ 1.

EONNEE

(i) 0,0}

PROOF.

We prove (i), since (ii) and (iii) are similar. As o - O,

/o _ r a-1.l+p /o _ -a r _p 1/a
Q, (r) = (o 6 o T (§7)de) = r(l+2ar b T dp)
~ r(I—Zar—alog(l—r))l/a ~ re—Zlog(l—r) = _—E_“Q
(1-r)

COROLLARY. Suppose that f(z) 2z w for 2z € D, then
|w| > Qz(l)l/a ~Y% as a > 0.

PROOF. Let a > 0, and w be a point on the boundary of f(D) closest to the orgin.

Let L1 denote the straight line from O to w , and L its pre-mage in D . Then

|w| > |£(z)| for z e L n D. Since the circle lz] =r, for each 0 <r <1, inter-

1/a 1/a

sects L at least once, Theorem 1l (i) gives |w| > Qz(r) and so |w| > Qz(l)

~Y% as a > 0 (from Theorem 2 (ii)).

3. A COEFFICIENT THEOREM.

2" << % ann means Ian| < |g | for n 2 0.

NOTATION. nEO an nto
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THEOREM 3. Let f € BI(I/N), with N a positive integer, and be given by (1.2).
Suppose also that for =z € D,
- n
fo(z) =z + n§2 Y2 s
where f0 is given by (2.1). Then
(1) f(z) << fO(z)’

G v, ~ AV A g ™! as 0w,

PROOF. (i) We first note that if |un| < lsnl, then for m = 1,2,...

© n.m ® n,m
(ngl o )<< (nEI an ).
To see this, let
° n.m © (m) n ] n,m (m) n
<n£1 oL7 > = n§0 and  ( E0 an > = n£0 B ’
so that
n - n -
N N N A L
n v=1 n-v n vl v n-v

1400 < 0O
n n

We now use induction on k to show that for n 21,

1 1
n=1,2,000, [AD] = o | <8 =BV

Clearly for

(x)

. Suppose now that |A§k)| < Bn for

n=1,2,,.. and k =1,2,...,j. Then tor n = 1,2,...

| < n B(j) g _ B(j+1)

(3+1) (3
IA I vE IIA lla - vél n n-v n

n-v
Thus (i) now follows at once, since from (2.2) we can write

K
_ 1= P n
flz) =z {1+ g0 oqm ) e

k, and since |pkl < 2 [7] we have

where p(z) =1+ kzl P2
k
2 $ z N _
f(2) << 2ll+ o2y w1 = £ -
(ii) When a = 1/N, (2.1) gives
n
_ ® n _ 2 2 z N
fO(Z) =z 4 n§2 Yu? T el 1+ N nf1 n+1/N ]
= b &3 23V
-2 5O &Y () EHw
Now trivially,
© 2" v ® z" v e 2"y
Giy o+ < GErmw < GEin) -
Write these three series as
z C(v)zn, b D(V)zn and 1 E(v)zn respectively.
nsv n nsv n n=v 'n
® (V) n _ v, 2" v
Then ngv n z - (n£0 n+l



Now

and

then

Thus

Also

Thus
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a result of Littlewood [8, p. 193], states that if v 1is a fixed positive integer

as n > ®

© 2" v (v) n
Glo w1’ = alo®n 2
¢év) ~ ﬁ(log n)\)_1 as n > «,
W) _ V) v v-1 ®
En = ¢n—v n(log n) as n > o,
© (v) n _ w " _ v
ng Cn z = (n£0 ol 1) and so
cO Y e
n j=0
~ %(log n)\)_1 as n > o
) _ v v-1
Dn n(log n) and so
NN, 2 2, N N-1
Yo~ ko D&Y ™ ~ & d)og m
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