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ABSTRACT. A necessary and sufficient condition for a topological group whose topology
can be induced by a total order compatible with the group structure is given and such
groups are called ordered or orderable topological groups. A separable totally-
disconnected ordered topological group is proved to be non-archimedean metrizable while
the converse is shown to be false by means of an example. A necessary and sufficient
condition for a non-totally disconnected locally compact abelian group to be orderable

is also given.
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1. INTRODUCTION.

Topological groups whose topology can be induced by a total order are called top-
ologically orderable groups and they are studied by Nyikos and Reichel [1] and
Venkataraman, Rajagopalan and Soundarajan [2]. In this paper we give a necessary and
sufficient condition so that topological group is orderable in the sense that it admits
a total order which induces the topology of the topological group and which is also
compatible with its group structure. We call such groups ordered topological groups.
As a first step to this we give a necessary and sufficient condition that a group be
orderable so that it admits a totoal order compatible with the group structure and such
groups are called ordered groups. Venkataraman, Rajagopalan, and Soundararajan have
shown (Theorem 2.6, [2] ) that a separable totally-disconnected topological group is a
topologically orderable group if and only if it is metrizable and zero dimensional. It
turns out that a separable totally-disconnected ordered topological group is non-
archimedean metrizable (in the sense of Rangan [3]) while the converse fails to be true.
It is interesting to note that the totally-disconnected non-archimedean metrizable

locally compact abelian topological group (QP’+) of p-adic numbers under addition

admits an order that is compatible with the group structure (+) alone and another order

that is compatible with its topology alone but admits no order that is compatible with
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both its group structure + and sufficient condition for a non-totally disconnected
locally compact abelian group to be orderable.
2, ORDERABILITY OF A TOPOLOGICAL GROUP.

THEOREM 2.1, A group G can be ordered if and only if a subgroup C(x) and a

homomorphism fx from C(x) into the additive group of real numbers can be found

corresponding to each x # e (e being the identity of G) which satisfies the fol-
lowing conditions

(i) =xeC(x) and fx(x) # 0 for every x in G, x 2 e,

(ii) for y in C(x), C(y) < C(x)
(iii) for x,y in G, x # e, y # e, either C(x) = C(y) and fx = fy or

C(x) & C(y) 1in which case fy(x) =0,
-1 -1 -1
(iv) for every a in G , aC(x)a = C(z) where 2z = axa and fx(t) = fz(ata )

for every t in C(x) i.e. if Ia:x+axa-1 is the inner automorphism deter-
mined by the element a in G then fx = fzoIa.

Further for the order on G , C(x) for each x is the smallest convex subgroup con-

taining x and C(x) = ker fx is the largest convex subgroup not containing x.

PROOF. Let G be an ordered group. For each x # e in G 1let C(x) denote the
smallest convex subgourp containing x and C(x)* be the largest convex subgroup not
containing x . Then it is well known (see [4] and [5]) that C(x)* is a normal sub-
group of C(x) and that C(x)/C(x)* 1is order isomorphic to a subgroup of the reals
and we identify this quotient group with the corresponding subgroup of the reals. Let

fx be the natural map of C(x) to C(x)/C(x)* . Then clearly fx(x) #z 0 . Since

C(x)* and C(y)* are the largest convex subgroups contained in C(x) and C(y)

respectively, C(x) = C(y) implies C(x)* = C(y)* and hence fx = fy . If

C(x) # C(y) then being convex subgroups of an ordered group either C(x) g C(y) or

C(y) £ C(x) . Hence (i), (ii) and (iii) of the theorem are easily verified. Inner
automorphism being order preserving it follows that aC(x)a—1 = C(axa_l) and

- -1 %
aC(x)*a 1. C(axa l) . Ia induces an order isomorphism I: between the quotient

groups C(x)/C(x)* and C(z)/C(z)* where 2z = axa-1 . If we identify these two sub-
groups of the reals forgetting the order isomorphism between them we get that

fx = szIa which proves (iv) of the theorem.

Conversely if G satisfies the conditions of the theorem we show that the set P
of all elements such that fx(x) > 0 serves as the strict positive part of an ordering
on G. For x € G, C(x) = C(x-l) by (ii) and hence fx = fx-l . X € PGdex(x) >0
&r 167 <oedxlgp .

We now observe a useful property of the subgroups C(x)'s which we call the pro-

perty P.



ORDERABILITY OF T'OPOLOGICAL GROUPS 749

PROPERTY P. If a, be G, a#e, b=e and C(b) §¢ C(a) then C(a) = C(ab)=
C(ba).
For C(b) 2 C(a) ab e C(a) and f,(b) =0 C(ab) < C(a) and f_(b) =0 . Now

C(ab) € C(a) =0 = fa(ab) £,(a) + fa(b) =f (a) =0 since f_(b) =0, a contradic-

C(ab). Similarly it can be seen that C(a) = C(ba).

tion to (i). Hence C(a)
If fx(x) > 0, fy(y) >0 and C(x) = C(y) then C(xy) = C(x) = C(y) and fxy(xy)=

. _ - . » c
fx(x) + fy(y) > 0 since fx fy fxy . For, otherwise since xy € C(x), C(xy) §

C(x) = C(y) and hence by (iii), 0 = fx(xy) = fx(x) + fy(y) > 0, a contradiction., If

however C(x) # C(y) let us suppose that C(x) $ C(y) (the case C(y) S C(x) can be
similarly dealt with). By Property P, C(xy) = C(y) and so fxy = fy and fxy(xy) =
fy(x) + fy(y) > 0. i.e. X,y ¢ P implies that xy € P.

Let x € P, a € G . Then fx(x) > 0 . By (iv) of the theorem we have aC(x)a-1 =

-l ~ -1, ~ -1
C(z) where 2z = axa and fz(z) = fz(dxa ) = fzoIa(x) = fx(x) > 0. i.e. z = axa

belongs to P. Now by Theorem 2, p. 13, [4] it follows that G is an ordered group.

To prove the second part of the theorem we first show that C(x) is a convex
subgroup by showing that y € C(x), e < t <y implies that yt“l € C(x) and hence
t ¢ C(x) . This is done by proving that C(x) : C(yt_l) is impossible, thereby proving
that C(x) 2 C(yt-l) . Suppose C(x) & C(yt-]) . From the assumption y € C(x) and
condition (ii) of the theorem we get that C(y-l) = C(y) < C(x) & C(yt-l). Property P
now implies that C(yt 1) = c(y 'yt™l) = c(t™)) = c(t) . We will now show that this is

impossible. For C(t) = C(yt—l) = C(ty-l) implies ft = fyt_l = fty-l and so 0 <

ey = - g h = ¢ Y = -1 LSO
fyt 1(yt °) = fyt 1(y) + fyt 1(t ) fyt 1(t ) ft(t ) since fyt 1 0. i.e.

ft(t) < 0 a contradiction to the choice of t . Thus we get "that C(yt-l) c C(x) by

(iii) of the theorem. In other words yt_1 € C(x).
We now prove that C(x) 1is the smallest convex subgroup containing x . For this
let us suppose that C 1is any conves subgroup containing x and let us assume that
x >e and t e C(x), t #x, t>e . This implies C(t) ¢ C(x) .
CASE 1. C(t) S C(x) .

Cc(t) = C(t_l) and Property P imply that C(x) = C(xt_l) and so fx -1 . Now

fxt

fxt-l(xt-l) = fx(xt-l) = fx(x) + fx(t-l) = fx(x) > 0 since fx(t_l)

0 in view of

C(t-l) ¢ C(x). Hence x >t > e . The convexity of C implies that t € C.
CASE 2. C(x) = C(t) = C(xt 1) .
Then fxt-l = fx = ft . We now discuss the two possibilities fx(x) 3.fx(t) and

fx(x) < fx(t) separately.
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f;(x) zrfx(t) =4>fxt—l(xt—l) > 0 by (i) of the THeorem since t # x. 1i.e.

e < t < Xx. Again from the convexity of C we conclude that t € C.

1

fx(x) < fx(t) :d>fx(t) < nfx(x) for some integer n =D~fx(xnt-l) >0 =1>C(xnt- ) =

C(x) and fx = fxnt-l = fxnt—l(xnt-l) >0=x">t>e =t € C since C 1is convex.

In either case t € C.

CASE 3. C(xt ) g C(x) = C(t).

Then fx(xt-l) =0 i.e. fx(x) fx(t). From Property P we get that C(xzt-l) = C(x)

. . _ 2.-1, _ -1,
which in turn implies that fx ft = fxzt_l . Now fx2t 1(x°t 7)) = fx(x) + fx(xt ) =

fx(x) > 0 since fx(xt-l) =0, i.e. x" >t >e . The convexity of C now implies

that t € C.
Thus we see that in all cases C(x) € C. For x < e C > C(x_l) = C(x) which
proves that C(x) 1is the smallest convex subgroup containing x.

fx is an order preserving homomorphism from C(x) to the reals. For let
-1 -1 -1
z,y € C(x) and z >y . Then C(zy ) € C(x) . C(zy ) & C(x) =4>fx(zy ) =0

-1 -1 -1
fx(z) = fx(y) . C(zy ) =Cx) = £ = fzy—l =0 < fzy-l(zy ) = fx(zy ) = fx(z) -
fx(y) = fx(y) < fx(z) . In either case fx(z) > fx(y) . This proves that Ker fx =
C(x)* is a convex subgroup of C(x) and hence also of G.
It remains for us to show that C(x)* is the largest convex subgroup not contain-

ing x . For this let us suppose that C is any convex subgroup not containing x .

Let t € C. Then since x ¢ C, Cc C(x) and so t € C(x). If fx(t) # 0 then

c(t)

taining t, C(x) = C(t) ¢ C. i.e. x € C a contradiction. Hence fx(t) =0 . 1i.e.

C(x) by (i) of the theorem and C(t) being the smallest convex subgroup con-

t € Ker fx = C(x)*. This completes the proof of the theorem.

Even though possibly one can prove Theorem 2.1 in a different way using Theorem 11,
p.51 of [4] or Theorem 2 of [5] we have prefered the above proof since it is elementary.
The above form of formulating the theorem gives rise in a natural way for a criterion
of orderability of a topological group as well.

REMARK. C, the intersection of all C(x), x € G, x * e is the first convex subgroup of
G . Hence when C = (e) the above theorem gives a necessary and sufficient condition
that G may be made into an ordered group without first convex subgroup.

THEOREM 2.2. A non-discrete topological group G can be ordered so that the in-
terval topology of the order coincides with the given topology and also simultaneously
this order is compatible with the group structure of G if and only if G satisfies
the following criterion (v) in addition to those of Theorem 2.1.

(v) either the intersection of all the C(x), x € G, x # e is the singleton (e) in

which case the collection {C(x)} , x € G form a neighbouthood base at the
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identity e of G or the intersection C of all the C(x), x € G, x % e

is an open subgroup of G and for each x in C , fx is an open continuous

homomorphism into the reals.

PROOF. In view of Theorem 2.1, it is enough to show that condition (v) above is
equivalent to the coincidence of the interval topology and the given topology of the
group G .

Let now G be an ordered group. G with the interval topology is a topological
group (see 4.19 [6]). We define C(x) and C(x)* for x € G, x # e as in Theorem 2.1.
CASE 1. nC(x) = (e) .

Let I be an open interval containing e . Then since G 1is not discrete there exists

a y > e such that y and y—l are in I . Since nC(x) = (e) , there exists x € C
such that y ¢ C(x) . t >e, t e C(x) implies t <y since C(x) 1is convex. Hence
t eI i,e. C(x) €I and this proves that C(x), x € G form a neighbourhood base of
e in G .

CASE 2. nC(x) = C = (e) .

Then C 1is a convex subgroup and hence open in G . For x € C it is clear that

C = C(x) . Hence for x,y € C, C = C(x) = C(y) and so fx = fy = f (say). x =y,

-1
X,y ¢ C =>f = fx = fy = fxy-l =2 0 = fxy-l(xy ) = f(x) - f(y) =D f(x) = f(y) . 1i.e.

*
f 1is one-to-one on C ., fx being the cannonical map from C(x) to C(x)/C(x) and
c(x)/c(x)* being order isomorphic to a subgroup of the reals, fx is an open continu-

ous homomorphism from C(x) to the reals.

To prove the converse also we consider two cases.
CASE 1. nC(x) = (e) .
From Case 1 of the necessity part it follows that {C(x)}, x € G, x # e, form a neigh-
bourhood base for the interval topology. By hypothesis {C(x)}, x ¢ G, x # e form a
neighbourhood base at e for the given topology and hence the two topologies coincide.
CASE 2. nC(x) = C = (e) .
For x,y € C, it is clear from the convexity of C(x) and (ii) of Theorem 2.1 that

fx = fy = f (say) . Then f is a one-to-one open continuous homomorphism from C to

the reals, the topology of C being the relative topology got from the order topology
of G . Hence C with respect to this (order) topology is homeomorphic to a subgroup
of the reals with respect to its relative topology. But by hypothesis f is an open
continuous homomorphism from C, taken with the relative topology got from the given
topology on G onto this subgroup of the reals. Now f is one-to-one implies that
the two topologies on C conincide. C being an open subgroup in both the topologies
on G , the rwo topologies on G themselves coincide.

COROLLARY 2.3. Let G be an ordered topological group (i.e. the topology of G
is giben by a total order compatible with the group structure of G). Then the com-
ponent of the identity e of G is either the trivial subgroup (e) or it is an open

subgroup topologically isomorphic to the additive group of reals.
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PROOF. If nC(x) = (e) by Theorem 2.2 above G becomes a zero dimensional group.
If nC(x) = C = (e) then C 1is the component of identity. For, each C(x) being an
open and closed subgroup, contains the component of e and so C itself contains the
component. But the component being a connected subgroup is also a convex subgroup (see
Proposition 1.3(2), [2]) and hence contains C which proves that C 1is the same as
the component. From Theorem 2.2 it follows easily that C 1is topologically isomorphic
to the additive group of reals.

3. TOTALLY DISCONNECTED ORDERED GROUPS.

A metric d on a set X 1is said to be a non-archimedean metric if d satisfies

the stronger triangle inequality

d(x,y) < max( d(x,z), d(z,y) )
for x,y,z € X. A topological group is said to be non-archimedean metrizable if there
exists a right (or left) invariant metric on G which induces the topology of G (see
Rangan [3]).

LEMMA 3.1. Suppose a topological group G is such that its topology is given by
a non-archimedean metric d then there is an equivalent non-archimedean right (or left)
invariant metric p on G (i.e. a non-archimedean metric p which gives the same
topology as d).

PROOF. When d is a non~archimedean metric on G then the metric d' = d/14d
also defines the same topology on G . Put p(x,y) = sup d'(xz,yz) where supremum is
taken as 2z varies in G ., Then p 1is well-defined since d' 1is bounded. It is
easy to check that p 1is a right invariant non-archimedean metric on G . We will now
show that the topologies induced by p and d' coincide.

Since pix,y) > d'(x,y) for all x,y € G, it is clear that Vn c Un for all

positive integers n where v, = {x : p(x,e) < 1/n} and u, = { x : d'(x,e) < 1/n}.

i.e. the topology induced by p is finer than the topology induced by d'. To prove

that the two topologies are the same we will show that each VM contains a Uk for

some k. Corresponding to the Integer M > 0, choose positive integers n,m such that

1/n + 1/m < 1/M and choose z, in G such that p(x,e) < d'(xzo,zo) + 1/n. Let
W= {x :4d' &zo,zo) < 1/m }. Then Wz is the open sphere with centre z = and radius
1/m with respect to the metric d'. The continuity of x - xz at x = e implies the

existence of a positive integer k such that U cWz_ . Let x ¢ Up- Clearly x

k%o o
is in W . Hence p(x,e) < d'(xzo,zo) + 1/n < 1/m+ 1/n < 1/M proving thereby that

U <V

k M This completes the proof of the lemma.

THEOREM 3.2, Let G be a separable totally disconnected ordered topological
group. Then G is non-archimedean metrizable.

PROOF. By Theorem 2.6 of [2], it follows that G is topologically orderable,
metrizable, zero-dimensional group and so carries a nen-archimedean metric inducing the
topology of G (see proof of Theorem 7 of [1] or [7]). Now from Lemma 3.1 it follows

that G 1is non-archimedean metrizable.
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Vénkataraman, Rajagopalan and Soundararajan proved (see Theorem 2.6, [2]) that a
separable totally disconnected group is topologically orderable (i.e. the topology is
given by a total order) if and only if it is metrizable and zero-dimensional. Non-
archimedean metrizable groups are totally disconnected groups (see Rangan [3]). Hence
in view of Theorem 3.2 above it is natural to ask whether the converse of Theorem 3.2
is also true. 1i.e. 1Is it possible to total order a non-archimedean separable topo-
logical group in such a way that the order is compatible with both the group structure
and the topology? That the answer to this question is in the negative is shown by
Theorem 3.4 given below. For the counter example given in Theorem 3.4 we require the
following definition.

Let Q denote the field of rational numbers. Let p be a fixed prime number.

Each x in Q can be written uniquely in the form psx' where p does not divide

the numerator and denominator of x' and s is an integer. We define I x|P =

l/pS and d(x,y) = |x-y|p for x,y in Q . Then d 1is easily seen to be a non-
archimedean metric. The completion of Qp of Q with this metric (which can be made

into a field extending the addition and multiplication in Q ) is called the field of

p-adic numbers. We consider the additive group of this field Qp and denote it by
Q itself. It is a separable totally disconnected group (see section 2, [8] for

details).

LEMMA 3.3. (see van Rooij [81). 1In Qp the series I n.n! converges to -1.
PROOF. Since [n!lp and ]n.n!lp tend to zero as n tends to infinity, it

follows that In! = A and In.n! =B . Then A+ B =ZIn! + In.n! =ZI(n+tl)! =A -1
which proves that B = -1.

THEOREM 3.4, There is no order > on (Qp,+) which is compatible with both +
and the usual topology of Qp even though it admits an order compatible with the topo-
logy of Qp alone and an order compatible with the group structure + alone.

PROOF. Suppose Qp admits a total order compatible with the group structure and
topology. Let 1 > O wunder this order. From the compatibility of the group structure

a
and order it follows that Sy =k21 k.k! > 0 and from the compatibility of the order

and topology it follows by Lemma 3.3 that -1 = lim s, > 0 which is a contradiction.
Similarly 1 < O 1is also impossible. This proves that Qp admits no order compatible

simultaneously with the group structure + and the topology. However by Theorem 2.6

of [2] it follows that it admits an order which induces the topology of Qp (see also
Remark 5.7 of [2]). Since Qp is a torsion-free abelian group it admits a total order

compatible with the group structure + alone (Corollary 5, p.36, [4]).
4, NON-TOTALLY DISCONNECTED ORDERED GROUPS.
In this section we consider only abelian non-totally disconnected groups. In what

follows we refer the reader to Wright [9] for the definitions of radical-free, maximal
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radical free etc.

THEOREM 4.1. A non-totally disconnected locally compact ableian topological group
is orderable if and only if it is maximally radical free and its component is an open
subgroup of G topologically isomorphic to the reals.

PROOF. Suppose G is a mon-totally disconnected locally compact abelian group
whose topology is given by a total order which is compatible with the group structure
of G . Then by Corollary 2.3 its component C 1is an open subgroup topologically
isomorphic with the reals. Now by Theorem 5.1 of Wright [9] it follows that G is
maximally radical-free in its interval topology.

Let now G satisfy the conditions of the Theorem. If G 1is connected then by
Theorem 5.2 of Wright [9] G 1is topologically isomorphic to the reals and so G is
orderable. If not since the component of the identity is open and topologically iso-
morphic to the reals G 1is one-dimensional , G/C is discrete and maximally radical
free by Theorem 5.3 of Wright [9] and hence torsion-free by Theorem 4.1 of Wright [9].
By Theorem 1 of Isiwata [10], G can be totally ordered so that the order topology
coincides with the given topology of G and this order is compatible with the group
structure as well.
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