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Abstract: Recently, the continuous Jacobi transform and its inverse
are defined and studied in [1] and [2]. 1In the present work, the
transform is used to derive a series representation for the Jacobi

functions Pia's)

(x), -%¥<a, Bs %, a+B =0, and A 2-%. The case
a =R =0 yields a representation for the Legendre functions and has been
dealt with in [3]. When X is a positive integer n, the representation

reduces to a single term, viz., the Jacobi polynomial of degree n.
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1. Introduction. The continuous Jacobi transform and its inverse
were introduced and studied in [1] and [2]. These transforms genera-
lize the work of Butzer, Stens and Wehrens [3] on the continuous
Legendre transform and the work of Debnath [4] on the discrete Jacobi
transform. In [2] an application to sampling technique was given. In
the present work, the continuous Jacobi transform is used to derive a
series representation of Jacobi functions P{u’s)(x). The representa-
tion includes that for the Legendre function given in [3]. When X

is a positive integer, the representation reduces to the Jacobi

polynomial (see e.g. [5]).
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2. Preliminaries. 1In this section we review material needed in the
development of the paper.
For o, B>-1, XeR, X +a+B820,-1,-2,... and x € (-1,1], the Jacobi

function of the first kind, P{Q’B)(x), is given by

(a,B) __T(A+a+l) . C1l-x
PA (x) -m F(-X,A+a+B+1; oa+l; = ) (2.1)
(see [6]) where
© (a)k(b)k

F(a,bj;c;z) = X, |z] <1,

Lo T

a,b,c real numbers with ¢ 20,-1,-2,...

. (a,B) _T'(a-A+1)T (A-a-B) _(a,B)
Since PA (x) = TN TO=8) pA-a-B—l(x)’ we may
restrict ourselves to Az—Qigil. The function P{G'B)(x) satisfies the
following relations:
w0 (x4 & {%B) (1)) =-AOraspel) wix)p{®B) () (2.2)
(a,B) _ I'(A+a+l)
P ) = rOE D T (e (2.3)
and
2, d (01,8) — )\(G‘B) - (C!,B)
(1-x )3§ PA (x) = Tta+B AX)PX (x)
2(A+a) (A+B8) (a,B) 2.4
Y xvarg . a-l 9 (2-4)

For a proof of (2.2), (2.3) and (2.4) see [l]. The term w(x) in (2.2)

is the weight function w(x) =(l-x)a(l+x)B and will be used throughout
a+B+1

the paper. Furthermore, it was shown in (1] that for A 2- — and
for any x e (-1,1].

(a,B) [(A+a+l) 2 2.5

N S e CE LIl v (2.5)

where M(A,a,B) 1is some constant depending upon A, a and B; and for

any A, v Z_Qi%il, A#zv, A z-(v+ta+B+l), a>-%, -% <B <% we have the

relation
1t (a,8) 5 (B,a)
Targel | WOIRTTT BRI (mx)dx (2.6)
2 1-1
F(A+a+l) T (v+B+1) { sin mA sin mv }.

T TOa-v) (O +v+a+B+l) ' T(vrD T (0 Fa+B+1) " TOA+1)T (v+a+p+1)
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We shall denote, throughout, the weighted square integrable
functions on (-1,1) by Li(—l,l). For £ eLi(-l,l), a>-%, -k <g <,

the continuous Jacobi transform (see [1]) is defined by

1
“(a,B) _ 1 (a,B)
f (A) = -2—0.:8—:]—. J[_IW(X)P)‘ (x) f(X)dX (2.7)

When a =8 =0, E(a,B) reduces to the continuous Legendre transform
studied in [3] and when A=n e P (P, the set of non-negative integers),
E(a,B) reduces to the discrete Jacobi transform of Debnath [4].

Tt was shown in [1] that if A%f(®®) 4y Ll (RY) and if 48 =0

then for almost every x e (-1,1), we obtain the inversion formula

f(x) = 4J E‘“'B’(x-a)pffés’(—x)HO(A)xsinnxdx (2.8)
where 0

2
- T (\+%)
Hy) = f7ars) T OB+

Since we needed the condition a+f =0 to derive (2.8), we shall,

from now on, assume this condition on o and 8.

In [2] the second continuous Jacobi transform was studied. For

A—B+%feLl(R+), it is given by
A aB) oy [T (B,a) __, T(A+k) . )
f (x) _4J0f(A)PX-% (-x) T N6 +5) Asinmada (2.9)
and the associated inversion formula is
1
_ 1y [(A+atk) (a,B) ~elo,B) 2.10
£E(N) =% TO%) I W(X)Pl—% (x) £ (x)dx ( )

The relation between the different transforms (see [2]) is

~ela,B) ~(a,B) _ 2T (A +a+k)
(£ (+)) (A) = TORS £())

and

F(A+%) 2(a,B) .y, (a,B) -
(f7713¢27 £ (+)) (x) f(x).

As an application of (2.9) and (2.10), it was shown in [2] that

if FcC(R+) is given by

1
- 1 (a,B)
F(X) = Hj_lw(x)f(x)Pux_% (x)dx
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for some ¢ >0, feLi(-l,l), then for all AeR+, we have

«

F()) = 2 (2n+l)F§n;l)F(uA;a+k)sinn(Au—(n+%)) F(Eii). (2.11)
n=0 T (A = (n+%) °)T (n+a+1) T (Ap+k) "

We will employ (2.7), (2.8), (2.9) and (2.10) to derive the

representation formula of the Jacobi functions. Since a +8= 0,

{a'e)(x) as P (x).

we shall write P {a,-a)

3. Derivation of the Representation Formula. Again, throughout this

section we shall assume a+f = 0, ~% <a, B <% and a 0. The case a =0

reduces to the representation of the Legendre functions and has been

developed in [3].

The series representation that we will develop, in this section,

(o =a) (4

for P is
(o, -a) _ T ()+a+l) sinm]A
Py (X) = FoFD T (arl) 7
o (2n+1)nz(—1)“pé“'"“’(x)
B I PN TS I PN e
+ 1 _ 02'-" ('l)n (].—_X)l'l+l} 0<x<1 (3.1)
A(A+1) nso a+n+l “1+x ’ ! :
and
(a,-a) T'(A+a+l) sinm\
P X) = FOFD T (adD) @
o (2n+1)n;(—1)“pl§°‘"°" (x) 1
{X(A+l)n£1 n(n+1) (a+l) (A-n) (X+n+1) YLEOeD
1, 1+x. % 1 T (=17 1+x n+l
Ta IR smwe t L) o ) oxs0 3-2)

In order to derive (3.1) and (3.2), we shall first introduce an

auxillary function k(x;h), apply (2.7), (2.9) to k(x;h) and utilize

the uniqueness of the Jacobi transform.

Lemma 3.1. For he(-1,1), define

(17 14x, % 1+n ©
HC=-Rt = IR ELEEY

/

k(x;h) =
, 1l <x<h

o

|
!
I
\

Then
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1 I'(A+a+l) _pla,=a) -
TOFD (TOoeD T T P (h)}, A=0, Ax-%

R (im0 =
1
1 1+h% 1-x, o _
sz (1-h- (3 Ih(——“x) dx}, A=0.

Proof. (2.2) together with (2.7) yields for A#0 and a+B8 =0

=

1
(a,—a)(‘;h)(x) =%[ (l-x)a(l+x)_aP{a'-a)(X)k(x;h)dx
J-1

1

_ 1 4,y 0tl -a+l d ,(a,-a) .

= %XTTITT J—l dx((l X) (1+4x) ax PA (x))k(x;h)dx.
On integrating by parts, we obtain

A T | R - [1 4 per-2) (hyax

’ Y PESH) Jp 9x "2

from which it follows that for A=0, X 2-%

cla,-a) _ 1 (a,-a) _pla,-a)

k (=:h) () = sy iRy (1)-py (h)}
Equivalently,

o (a,-a) - 1 I (A+a+l) _pla,-a)

K o) = 55y U rosD T ern ~ By (h)}
from (2.3).

when 1 =0, P{®"®) (x) =1. This together with (2.7) yields

~ 1
k(@7 (Lony (o) =!s[ (1-x) % (1+x) "%k (x; h) dx
-1

1+h, a

a1l l+x,a_ 1l+h
(50 O (=) “1)ax

-s[l(l—x)“mx)'
- Jh 1-x

1
_ 1 4 _ (l+h o 1-x,a
=35 [1-h (I:H) Ih(I:;) dx].

This completes the proof of Lemma 3.1.

5" (a,=-a)

Since )Xk (-,h)(A—%)eLl(R+) and since k(x;h) is continuous

on (-1,1), it follows from (2.8) and Lemma 3.1 that for A =0

*® 2 (a,-a)
k(x:h) =4f 1 T+ _rfosme )
0 22—y TO-a+¥)T(a+I) "TOA+a+H T (A-atk) - °

. Pi:g’a)(—x)XSinnde. (3.3)

From (2.11) with p=1, o 20, he (-1,1) and Lemma 3.1, we have
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(a,-a)
-2, 27

k(a,-a)(.'h)(o_%) __1 [ I (c+a+k)

o2y T (o+5)T (a+))

_ Dlo+atik® " (-;n) (0)sinm (o-%)
m(02-%)T (0+}) T (at1)

+

+ § (2n+1)T (n+1)T (c+o+k)sinm(o-n-%) _ 1
nel 102 (nth) )T (mratl) T (04h) n(n+1)

Jl(n+a+l) _(a,-a) 7
[T+ n’ Fn (xﬁ

where k(a’—a)(-;h)(O) is as given in Lemma 3.1. Replacing o by A+
in the above expression together with Lemma 3.1 and the uniqueness of

the Jacobi transform imply

1 LOvarl) __pla,-a) )] _IO+atl)sinm) kA(a,—a)(x;h)(O)+
X (A+1) [T (a+1)T (A+1) A d T(A) (A+1)T (a+1) T (A+1)

N E (2n+1) T (n+1) T (A+a+l)sinm (A-n) 1 [ I(n+a+l)

(a,-a) , .~
L TOEn) DT (o4a# D T (A+D) (1) | T(a*Dn! - Pn (x) -

Therefore,

p(a/=a) 1) _ TOxa+l) T Ovarl)sinmh k7% ony o)
A " T (a+1)T (A+1) nT (a+1)T (A=1)

_ E A(A+1) (2n+1) T (A+a+1) sinm (A-n)
Ly TSR (nFD) T A+ n (n# D) T (a+1)

o A(A+l)(2n+l)n!P(A+a+1)sinn(k—n)Péa'_a)(h)

+n§l T(-n) (AfnFD T (n+a+1) T (A+1) 0 (n+1)

(3.4)

From (2.7) we now have

~(a,-a) L -—a_ (a,-a) («,-a)
P, % (0) = %j (1-3) * (14x) %2 7% (7 (x) ax
-1

~

which together with the above expression for P

{“"“)(h) yields

. 1
(a,-a) _ o —af __T(A+a+l)
Py (0) -%J_l(l x) " (1+x) [r(a+1)r(x+1)

_ I'(A+a+l)sinm) ﬁ(“'"“)(x,h)(O)
T (a+1)T (A+1)

(2n+1) A (A+1)T (A+a+l)sinm (A-n)
n=1 m(A-n) (A+n+1)T (A+1)n(n+1)T (a+1)

|
e~ §

(2n+1)A(A+l)F(A+u+1)sinn(k-n)P{a’-a)(x)?

+ L 70 (FnF D T (nra+ D T (A+1) n(2n+1) i

n

dx

e~ 8
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Using Euler's formula [5]

I'(a+l)T (R+1) xa+3+1

FaTEY) a, B>-1 (3.5)

* 8
[ (x-t) *tPdt =
0

with a+8 =0, t=1+u, we obtain

1
f (1-x) % (1+x) "¢

i1

dx = 2T (a+l)T(1l-a).

This together with Lemma 3.1 yields
pla,-a) _ I'(1-0) T (A+a+l)
P, (0) = T (O+1)

f A(A+1) (2n+1) T (1~0) T (A+a+1) sinw (A=n)
n(n+1) 7 (A-n) (A +n+1) T (A+1)

n=1
. 1
_ I'(A+a+l)sinm) 0 -a 1
ZrT (ar 1) T O +1) J_{l X)) gy (mx) dx
. 1 a - -
I (A+a+l)sinma (1-x) " (1+x) a(1+x)“(1_x) a rl 1-t
T T (0 D) T (A1) J_l T JX(IIE)udt dx

+ 2 X(A+l)(2n+l)n!F(x+a+l)sinn(A+n)
n=1 "(A=n) (A+n+I)T (n+a+1) T (A+1) n (n+1)
1

: %[_1(1-x)“<1+x>‘“ Péa’—a)(x)dx.

The last term in the above expression vanishes by the orthogonality
of the Jacobi polynomials; that is,

1
! (1-x) % (1+x) "% Péa’-u)(x)dx =
-1

(a,-a)

n (x)dx = 0

1 -a _(a,-a)
= J (1-x) % (1+x) ¢ poa' ) x)p
-1

Moreover, using (3.5), the third term can be written

1 a+l a
%J (1-x) (1+x) "dx = T'(a+2)T'(1l-a).
-1
Therefore,
“(o,-a) _ T(1-0) T (Ma+l)
Pa (0 = T D)

§ A{A+1) (2n+1) T (1-g) T (A+g+l) sing ()-n)
=1

n= n(n+l) n(i-n) (A\+n+1) 1 (A+1)

_ I'(Ma+l)sinmA
T (D) T(asT)a | (2+2)T(1-a) +

[ (A+a+l)sinm) [l Jl 1-t. a
1

T OeD (e | ) (TR dedx (3.6)
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From (2.6), (2.7 i ; (a,B) _ n )
( ) and the identity Pn (=x) = (-1) P;B a)(x)’

it follows that

“u,~a)
Pl

= I(A+a+1)T (1-a)sinmi

(0 TAA+LIT (A +1) c A= 0, X 2-k (3.7)

Hence by the uniqueness of the Jacobi transform, we have from (3.6)

and (3.7),

1- 3 A(A+1) (2n+1)sinn (A-n) a+l sinm) |

n=1 DN+ m(=n) (A+n+1) ~ 2a 1
. 1,1
+ sin m) J 1-t,a sin ma
IraT (1+a) T (1=9) _1[x(-+t) dt = X0+

Now (3.4) can be expressed as
I (A+1)A(at+l) (a,-a) -
TOrarD  TA )
= (2ntDntsinn(A-n) (%7 (x)

A(A+l)nzl n(n*l) (o+1) _n(A-n) (en+D)  ©

l l o -Q
sinmA {, 1 j_lfx(l't) (1+t) “dtdx

P Tr L EYTOFD T T dar (oD T(1Sq) +

-

X 1 1l+x, a
5;'*53 (I:;) f (IIE) dt .

+

By interchanging the order of integration and by (3.5) we obtain

1,1
f f (1-t) % (1+t) “%dtdx = 2r (l+a)T(2~a)
“1ix

Thus,

T(A+1)T (a+l) _(a,-a) _
T (A +a+1) BT =
© (2n+l)n! (-1) 51nnAP(a' o‘)(x)

= A(A+l)n£l n(n+1>(a+1)nn(x-nYTl+n+l)

-

; |
, sinm) ¢ 1 1, x l(1+x a[ (£—E)adt’ (3.8)

Y PIoED T26 Y7 e T=x I+t

The series representation of the Jacobi function P{a’ 0‘)(x) will be

completed once we obtain an equivalent expression for the integral.

_ 1-t o
f(x;a) —J (1+t) dt.

Lemma 3.2. For -%<a <%, (a20), we have
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+1 o n
L. a-xt® _ 20 (-1)" 1-x,n
a)  flua) = =T (- 1o sener @) e 0% <l
(1+x) n=1
b) f‘(x'a) 2na _(1-X)a (l-ﬁl— 3:0 (_'_l)_i(l“_x)“) -1<x<0
! sinma (1+x)a—1 1-x no1 a-n-1'1-x !

Proof: a) 1Integration by parts yields the recursive relation

(l-x)a+l

1
FlGe) = 51 (1+x) ®

[e]
-m f(X,O,+1) .

By employing this relation and after simplification, we obtain

+1 @ n
(1-x)° 2a -1" 1-x,n
f(xja) = — (1 -~ § —= (=)
(l+x)a 1+ n=o n+a+l "1+x
The series converges for all x such that I%iﬁl <1l; that is, if

0 <x<1l. When x=0,

£(0;a) = 1-20 §
b) We rewrite f(x; ) as

0 1
f(x;a) = J (ﬂ)“dfﬂ[ (325) %t = J(x;a) +£(0,0), say.
x 1*t o 1+t

By introducing

X
= 1-t,a
J*(x;a) —)(_l(l"'t) dt

J(x;a) can be written as
J(x;a) = J*(0;0) =JI*(x;a).

Upon an integration by parts, we obtain

1 oa-xn* o

= — — J*(x;0-1)
l1-a (1+x)a 1 1l-o

J*(x;a) =

Repeating the above formula, recursively, results in the series.

(1-x)" 2a v (=17 1+x,n
It (x;a) = AZX) -2 ¢ D d4x)n,
(1+x) @ 1 1-x n=o o0 1 "1-x
which converges for all x such that I%;%l <1l; that is, for -1 <x<0.
When x =0,
son°
* . = - - -7
J*(0;a) 1-2a § =3

n=0
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Thus,

f(x;a) = J*(0,a) +£(0,q) =J*(x;a)

- _2ma (1-x)° 2a o (-1 1
= = - 1 - <2 )" +x n
sinma ) o1 T-x% nto a-n-1 T))

which completes the verification of Lemma 3.2.

From (3.8) and Lemma 3.2, the representation of the Jacobi

(a,-a)

function P, (x) will follow. 1In particular, for X 2-% (X = 0)

(a,-a) ' (A\+a+l) sinm)

Py (X) = FOFDT(rDy —n - (A1) -
= (2n+l)n!(-1) P(“' %) (%) 1
T ooy D (ad D) (A-n) oonrD P Ao
_ : (-1 1- X, n+l .
nbo na+l G5 1 0Ex <l
and
(a,-a) _ T'(x+a+1) sinm) .
P ®) = FoFDT (e - O+
= (2n+n! (-1)"p[* 7 (x) 1 1
© L amED (oD (- Sy oA YD "ot
(1+x)% 7 T (-n" L+x, n+1
+ (1-x) @ sinma +ni0 a-n-1 (1 =) b, -l<x<o.

The above representations will hold for A =0 provided that
sinm)
mA
formula reduces to that for Legendre functions derived in [3],

(l+x) n
(1- X) a sinma

is interpreted to be equal to 1 for A =0. When a =0, the

provided that -

is given its limiting value of 0 as

a>0.
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