

A REPRESENTATION OF JACOBI FUNCTIONS

E. Y. DEEBA

Department of Applied Mathematical Sciences
University of Houston-Downtown
Houston, Texas 77002

and

E. L. KOH

Department of Mathematics & Statistics
University of Regina
Regina, Canada S4S 0A2

(Received August 1, 1985)

Abstract: Recently, the continuous Jacobi transform and its inverse are defined and studied in [1] and [2]. In the present work, the transform is used to derive a series representation for the Jacobi functions $P_{\lambda}^{(\alpha, \beta)}(x)$, $-\frac{1}{2} \leq \alpha, \beta \leq \frac{1}{2}$, $\alpha + \beta = 0$, and $\lambda \geq -\frac{1}{2}$. The case $\alpha = \beta = 0$ yields a representation for the Legendre functions and has been dealt with in [3]. When λ is a positive integer n , the representation reduces to a single term, viz., the Jacobi polynomial of degree n .

KEY WORDS AND PHRASES: Jacobi functions, Jacobi transform, representation, special functions.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: 33A30, 44A15, 44A20.

1. Introduction. The continuous Jacobi transform and its inverse were introduced and studied in [1] and [2]. These transforms generalize the work of Butzer, Stens and Wehrens [3] on the continuous Legendre transform and the work of Debnath [4] on the discrete Jacobi transform. In [2] an application to sampling technique was given. In the present work, the continuous Jacobi transform is used to derive a series representation of Jacobi functions $P_{\lambda}^{(\alpha, \beta)}(x)$. The representation includes that for the Legendre function given in [3]. When λ is a positive integer, the representation reduces to the Jacobi polynomial (see e.g. [5]).

2. Preliminaries. In this section we review material needed in the development of the paper.

For $\alpha, \beta > -1$, $\lambda \in \mathbb{R}$, $\lambda + \alpha + \beta \neq 0, -1, -2, \dots$ and $x \in (-1, 1)$, the Jacobi function of the first kind, $P_{\lambda}^{(\alpha, \beta)}(x)$, is given by

$$P_{\lambda}^{(\alpha, \beta)}(x) = \frac{\Gamma(\lambda + \alpha + 1)}{\Gamma(\lambda + 1)\Gamma(\alpha + 1)} F(-\lambda, \lambda + \alpha + \beta + 1; \alpha + 1; \frac{1-x}{2}) \quad (2.1)$$

(see [6]) where

$$F(a, b; c; z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k k!} z^k, \quad |z| < 1,$$

a, b, c real numbers with $c \neq 0, -1, -2, \dots$.

Since $P_{\lambda}^{(\alpha, \beta)}(x) = \frac{\Gamma(\alpha - \lambda + 1)\Gamma(\lambda - \alpha - \beta)}{\Gamma(1 - \lambda)\Gamma(\lambda - \beta)} P_{\lambda - \alpha - \beta - 1}^{(\alpha, \beta)}(x)$, we may restrict ourselves to $\lambda \geq -\frac{\alpha + \beta + 1}{2}$. The function $P_{\lambda}^{(\alpha, \beta)}(x)$ satisfies the following relations:

$$\frac{d}{dx}(w(x)(1-x^2)\frac{d}{dx}P_{\lambda}^{(\alpha, \beta)}(x)) = -\lambda(\lambda + \alpha + \beta + 1) w(x) P_{\lambda}^{(\alpha, \beta)}(x) \quad (2.2)$$

$$P_{\lambda}^{(\alpha, \beta)}(1) = \frac{\Gamma(\lambda + \alpha + 1)}{\Gamma(\lambda + 1)\Gamma(\alpha + 1)}, \quad (2.3)$$

and

$$(1-x^2)\frac{d}{dx}P_{\lambda}^{(\alpha, \beta)}(x) = (\frac{\lambda(\alpha - \beta)}{2\lambda + \alpha + \beta} - \lambda x)P_{\lambda}^{(\alpha, \beta)}(x) + \frac{2(\lambda + \alpha)(\lambda + \beta)}{2\lambda + \alpha + \beta}P_{\lambda-1}^{(\alpha, \beta)}(x). \quad (2.4)$$

For a proof of (2.2), (2.3) and (2.4) see [1]. The term $w(x)$ in (2.2) is the weight function $w(x) = (1-x)^{\alpha}(1+x)^{\beta}$ and will be used throughout the paper. Furthermore, it was shown in [1] that for $\lambda \geq -\frac{\alpha + \beta + 1}{2}$ and for any $x \in (-1, 1)$.

$$|P_{\lambda}^{(\alpha, \beta)}(x)| \leq \frac{\Gamma(\lambda + \alpha + 1)}{\Gamma(\lambda + 1)\Gamma(\alpha + 1)} + M(\lambda, \alpha, \beta) \log \frac{2}{1+x} \quad (2.5)$$

where $M(\lambda, \alpha, \beta)$ is some constant depending upon λ , α and β ; and for any λ , $v \geq -\frac{\alpha + \beta + 1}{2}$, $\lambda \neq v$, $\lambda \neq -(v + \alpha + \beta + 1)$, $\alpha > -\frac{1}{2}$, $-\frac{1}{2} < \beta < \frac{1}{2}$ we have the relation

$$\begin{aligned} & \frac{1}{2^{\alpha + \beta + 1}} \int_{-1}^1 w(x) P_{\lambda}^{(\alpha, \beta)}(x) P_v^{(\beta, \alpha)}(-x) dx \\ &= \frac{\Gamma(\lambda + \alpha + 1)\Gamma(v + \beta + 1)}{\Gamma(\lambda - v)(\lambda + v + \alpha + \beta + 1)} \left\{ \frac{\sin \pi \lambda}{\Gamma(v + 1)\Gamma(\lambda + \alpha + \beta + 1)} - \frac{\sin \pi v}{\Gamma(\lambda + 1)\Gamma(v + \alpha + \beta + 1)} \right\}. \end{aligned} \quad (2.6)$$

We shall denote, throughout, the weighted square integrable functions on $(-1,1)$ by $L_w^2(-1,1)$. For $f \in L_w^2(-1,1)$, $\alpha > -\frac{1}{2}$, $-\frac{1}{2} < \beta < \frac{1}{2}$, the continuous Jacobi transform (see [1]) is defined by

$$\hat{f}^{(\alpha, \beta)}(\lambda) = \frac{1}{2^{\alpha+\beta+1}} \int_{-1}^1 w(x) P_{\lambda}^{(\alpha, \beta)}(x) f(x) dx \quad (2.7)$$

When $\alpha = \beta = 0$, $\hat{f}^{(\alpha, \beta)}$ reduces to the continuous Legendre transform studied in [3] and when $\lambda = n \in \mathbb{P}$ (\mathbb{P} , the set of non-negative integers), $\hat{f}^{(\alpha, \beta)}$ reduces to the discrete Jacobi transform of Debnath [4].

It was shown in [1] that if $\lambda^{\frac{1}{2}} f^{(\alpha, \beta)}(\lambda - \frac{1}{2}) \in L^1(\mathbb{R}^+)$ and if $\alpha + \beta = 0$ then for almost every $x \in (-1,1)$, we obtain the inversion formula

$$f(x) = 4 \int_0^\infty \hat{f}^{(\alpha, \beta)}(\lambda - \frac{1}{2}) P_{\lambda - \frac{1}{2}}^{(\alpha, \beta)}(-x) H_0(\lambda) \lambda \sin \pi \lambda d\lambda \quad (2.8)$$

where

$$H_0(\lambda) = \frac{\Gamma^2(\lambda + \frac{1}{2})}{\Gamma(\lambda + \alpha + \frac{1}{2}) \Gamma(\lambda + \beta + \frac{1}{2})}.$$

Since we needed the condition $\alpha + \beta = 0$ to derive (2.8), we shall, from now on, assume this condition on α and β .

In [2] the second continuous Jacobi transform was studied. For $\lambda^{-\beta + \frac{1}{2}} f \in L^1(\mathbb{R}^+)$, it is given by

$$\hat{f}^{(\alpha, \beta)}(x) = 4 \int_0^\infty f(\lambda) P_{\lambda - \frac{1}{2}}^{(\beta, \alpha)}(-x) \frac{\Gamma(\lambda + \frac{1}{2})}{\Gamma(\lambda + \beta + \frac{1}{2})} \lambda \sin \pi \lambda d\lambda \quad (2.9)$$

and the associated inversion formula is

$$f(\lambda) = \frac{1}{2} \frac{\Gamma(\lambda + \alpha + \frac{1}{2})}{\Gamma(\lambda + \frac{1}{2})} \int_{-1}^1 w(x) P_{\lambda - \frac{1}{2}}^{(\alpha, \beta)}(x) \hat{f}^{(\alpha, \beta)}(x) dx \quad (2.10)$$

The relation between the different transforms (see [2]) is

$$(\hat{f}^{(\alpha, \beta)}(\cdot)) \hat{f}^{(\alpha, \beta)}(\lambda) = \frac{2\Gamma(\lambda + \alpha + \frac{1}{2})}{\Gamma(\lambda + \frac{1}{2})} f(\lambda)$$

and

$$\left(\frac{\Gamma(\lambda + \frac{1}{2})}{\Gamma(\lambda + \alpha + \frac{1}{2})} \hat{f}^{(\alpha, \beta)}(\cdot) \right) (\alpha, \beta)(x) = f(x).$$

As an application of (2.9) and (2.10), it was shown in [2] that if $F \in C(\mathbb{R}^+)$ is given by

$$F(\lambda) = \frac{1}{2} \int_{-1}^1 w(x) f(x) P_{\lambda - \frac{1}{2}}^{(\alpha, \beta)}(x) dx$$

for some $\mu > 0$, $f \in L_w^2(-1,1)$, then for all $\lambda \in \mathbb{R}^+$, we have

$$F(\lambda) = \sum_{n=0}^{\infty} \frac{(2n+1)\Gamma(n+1)\Gamma(\mu\lambda+\alpha+\frac{1}{2})\sin\pi(\lambda\mu-(n+\frac{1}{2}))}{\pi(\lambda^2\mu^2-(n+\frac{1}{2})^2)\Gamma(n+\alpha+1)\Gamma(\lambda\mu+\frac{1}{2})} F\left(\frac{n+\frac{1}{2}}{\mu}\right). \quad (2.11)$$

We will employ (2.7), (2.8), (2.9) and (2.10) to derive the representation formula of the Jacobi functions. Since $\alpha + \beta = 0$, we shall write $P_{\lambda}^{(\alpha, \beta)}(x)$ as $P_{\lambda}^{(\alpha, -\alpha)}(x)$.

3. Derivation of the Representation Formula. Again, throughout this section we shall assume $\alpha + \beta = 0$, $-\frac{1}{2} < \alpha$, $\beta < \frac{1}{2}$ and $\alpha \neq 0$. The case $\alpha = 0$ reduces to the representation of the Legendre functions and has been developed in [3].

The series representation that we will develop, in this section, for $P_{\lambda}^{(\alpha, -\alpha)}(x)$ is

$$\begin{aligned} P_{\lambda}^{(\alpha, -\alpha)}(x) &= \frac{\Gamma(\lambda+\alpha+1)}{\Gamma(\lambda+1)\Gamma(\alpha+1)} \frac{\sin\pi\lambda}{\pi} \cdot \\ &\cdot \{ \lambda(\lambda+1) \sum_{n=1}^{\infty} \frac{(2n+1)n!(-1)^n P_n^{(\alpha, -\alpha)}(x)}{n(n+1)(\alpha+1)_n(\lambda-n)(\lambda+n+1)} + 1 \\ &+ \frac{1}{\lambda(\lambda+1)} - \sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha+n+1} \left(\frac{1-x}{1+x} \right)^{n+1} \}, \quad 0 \leq x < 1, \end{aligned} \quad (3.1)$$

and

$$\begin{aligned} P_{\lambda}^{(\alpha, -\alpha)}(x) &= \frac{\Gamma(\lambda+\alpha+1)}{\Gamma(\lambda+1)\Gamma(\alpha+1)} \frac{\sin\pi\lambda}{\pi} \cdot \\ &\cdot \{ \lambda(\lambda+1) \sum_{n=1}^{\infty} \frac{(2n+1)n!(-1)^n P_n^{(\alpha, -\alpha)}(x)}{n(n+1)(\alpha+1)_n(\lambda-n)(\lambda+n+1)} + 1 + \frac{1}{\lambda(\lambda+1)} \\ &- \frac{1}{\alpha} + \left(\frac{1+x}{1-x} \right)^{\alpha} \frac{\pi}{\sin\pi\alpha} + \sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha-n-1} \left(\frac{1+x}{1-x} \right)^{n+1} \}, \quad -1 < x \leq 0. \end{aligned} \quad (3.2)$$

In order to derive (3.1) and (3.2), we shall first introduce an auxillary function $k(x; h)$, apply (2.7), (2.9) to $k(x; h)$ and utilize the uniqueness of the Jacobi transform.

Lemma 3.1. For $h \in (-1, 1)$, define

$$k(x; h) = \begin{cases} \frac{1}{\alpha} \left[\left(\frac{1+x}{1-x} \right)^{\alpha} - \left(\frac{1+h}{1-h} \right)^{\alpha} \right], & h \leq x < 1, \\ 0 & , -1 < x \leq h \end{cases}$$

Then

$$\begin{aligned} \hat{k}^{(\alpha, -\alpha)}(x; h)(\lambda) &= \frac{1}{\lambda(\lambda+1)} \left\{ \frac{\Gamma(\lambda+\alpha+1)}{\Gamma(\lambda+1)\Gamma(\alpha+1)} - P_{\lambda}^{(\alpha, -\alpha)}(h) \right\}, \quad \lambda \neq 0, \quad \lambda \geq -\frac{1}{2} \\ &= \frac{1}{2\alpha} \left\{ 1 - h - \left(\frac{1+h}{1-h}\right)^{\alpha} \int_h^1 \left(\frac{1-x}{1+x}\right)^{\alpha} dx \right\}, \quad \lambda = 0. \end{aligned}$$

Proof. (2.2) together with (2.7) yields for $\lambda \neq 0$ and $\alpha + \beta = 0$

$$\begin{aligned} \hat{k}^{(\alpha, -\alpha)}(\cdot; h)(\lambda) &= \frac{1}{2} \int_{-1}^1 (1-x)^{\alpha} (1+x)^{-\alpha} P_{\lambda}^{(\alpha, -\alpha)}(x) k(x; h) dx \\ &= -\frac{1}{2} \frac{1}{\lambda(\lambda+1)} \int_{-1}^1 \frac{d}{dx} ((1-x)^{\alpha+1} (1+x)^{-\alpha+1}) \frac{d}{dx} P_{\lambda}^{(\alpha, -\alpha)}(x) k(x; h) dx. \end{aligned}$$

On integrating by parts, we obtain

$$\hat{k}^{(\alpha, -\alpha)}(\cdot; h)(\lambda) = \frac{1}{\lambda(\lambda+1)} \int_h^1 \frac{d}{dx} P_{\lambda}^{(\alpha, -\alpha)}(x) dx$$

from which it follows that for $\lambda \neq 0$, $\lambda \geq -\frac{1}{2}$

$$\hat{k}^{(\alpha, -\alpha)}(\cdot; h)(\lambda) = \frac{1}{\lambda(\lambda+1)} \{ P_{\lambda}^{(\alpha, -\alpha)}(1) - P_{\lambda}^{(\alpha, -\alpha)}(h) \}$$

Equivalently,

$$\hat{k}^{(\alpha, -\alpha)}(\cdot; h)(\lambda) = \frac{1}{\lambda(\lambda+1)} \left\{ \frac{\Gamma(\lambda+\alpha+1)}{\Gamma(\lambda+1)\Gamma(\alpha+1)} - P_{\lambda}^{(\alpha, -\alpha)}(h) \right\}$$

from (2.3).

When $\lambda = 0$, $P_0^{(\alpha, -\alpha)}(x) = 1$. This together with (2.7) yields

$$\begin{aligned} \hat{k}^{(\alpha, -\alpha)}(\cdot; h)(0) &= \frac{1}{2} \int_{-1}^1 (1-x)^{\alpha} (1+x)^{-\alpha} k(x; h) dx \\ &= \frac{1}{2} \int_h^1 (1-x)^{\alpha} (1+x)^{-\alpha} \left\{ \frac{1}{\alpha} \left[\left(\frac{1+x}{1-x}\right)^{\alpha} - \left(\frac{1+h}{1-h}\right)^{\alpha} \right] \right\} dx \\ &= \frac{1}{2\alpha} \left[1 - h - \left(\frac{1+h}{1-h}\right)^{\alpha} \int_h^1 \left(\frac{1-x}{1+x}\right)^{\alpha} dx \right]. \end{aligned}$$

This completes the proof of Lemma 3.1.

Since $\lambda^{\frac{1}{2}} \hat{k}^{(\alpha, -\alpha)}(\cdot, h)(\lambda - \frac{1}{2}) \in L^1(\mathbb{R}^+)$ and since $k(x; h)$ is continuous on $(-1, 1)$, it follows from (2.8) and Lemma 3.1 that for $\lambda \neq 0$

$$\begin{aligned} k(x; h) &= 4 \int_0^{\infty} \frac{1}{\lambda^2 - \frac{1}{4}} \left\{ \frac{\Gamma(\lambda + \frac{1}{2})}{\Gamma(\lambda - \alpha + \frac{1}{2})\Gamma(\alpha + 1)} - \frac{\Gamma^2(\lambda + \frac{1}{2}) P_{\lambda - \frac{1}{2}}^{(\alpha, -\alpha)}(h)}{\Gamma(\lambda + \alpha + \frac{1}{2})\Gamma(\lambda - \alpha + \frac{1}{2})} \right\} \\ &\quad \cdot P_{\lambda - \frac{1}{2}}^{(-\alpha, \alpha)}(-x) \lambda \sin \pi \lambda d\lambda. \end{aligned} \tag{3.3}$$

From (2.11) with $\mu = 1$, $\sigma \geq 0$, $h \in (-1, 1)$ and Lemma 3.1, we have

$$\begin{aligned}
\hat{k}^{(\alpha, -\alpha)}(\cdot, h)(\sigma - \frac{1}{2}) &= \frac{1}{\sigma^2 - \frac{1}{4}} \left[\frac{\Gamma(\sigma + \alpha + \frac{1}{2})}{\Gamma(\sigma + \frac{1}{2}) \Gamma(\alpha + \frac{1}{2})} - P_{\sigma - \frac{1}{2}}^{(\alpha, -\alpha)}(h) \right] \\
&= \frac{\Gamma(\sigma + \alpha + \frac{1}{2}) \hat{k}^{(\alpha, -\alpha)}(\cdot; h)(0) \sin \pi(\sigma - \frac{1}{2})}{\pi (\sigma^2 - \frac{1}{4}) \Gamma(\sigma + \frac{1}{2}) \Gamma(\alpha + 1)} + \\
&+ \sum_{n=1}^{\infty} \frac{(2n+1) \Gamma(n+1) \Gamma(\sigma + \alpha + \frac{1}{2}) \sin \pi(\sigma - n - \frac{1}{2})}{\pi (\sigma^2 - (n + \frac{1}{2})^2) \Gamma(n + \alpha + 1) \Gamma(\sigma + \frac{1}{2})} \frac{1}{n(n+1)} \cdot \\
&\cdot \left[\frac{\Gamma(n + \alpha + 1)}{\Gamma(\alpha + 1) n!} - P_n^{(\alpha, -\alpha)}(x) \right]
\end{aligned}$$

where $\hat{k}^{(\alpha, -\alpha)}(\cdot; h)(0)$ is as given in Lemma 3.1. Replacing σ by $\lambda + \frac{1}{2}$ in the above expression together with Lemma 3.1 and the uniqueness of the Jacobi transform imply

$$\begin{aligned}
\frac{1}{\lambda(\lambda+1)} \left[\frac{\Gamma(\lambda + \alpha + 1)}{\Gamma(\alpha + 1) \Gamma(\lambda + 1)} - P_{\lambda}^{(\alpha, -\alpha)}(h) \right] &= \frac{\Gamma(\lambda + \alpha + 1) \sin \pi \lambda}{\pi(\lambda)(\lambda+1) \Gamma(\alpha+1) \Gamma(\lambda+1)} \hat{k}^{(\alpha, -\alpha)}(x; h)(0) + \\
&+ \sum_{n=1}^{\infty} \frac{(2n+1) \Gamma(n+1) \Gamma(\lambda + \alpha + 1) \sin \pi(\lambda - n)}{\pi(\lambda - n)(\lambda + n + 1) \Gamma(n + \alpha + 1) \Gamma(\lambda + 1)} \frac{1}{n(n+1)} \left[\frac{\Gamma(n + \alpha + 1)}{\Gamma(\alpha + 1) n!} - P_n^{(\alpha, -\alpha)}(x) \right].
\end{aligned}$$

Therefore,

$$\begin{aligned}
P_{\lambda}^{(\alpha, -\alpha)}(h) &= \frac{\Gamma(\lambda + \alpha + 1)}{\Gamma(\alpha + 1) \Gamma(\lambda + 1)} - \frac{\Gamma(\lambda + \alpha + 1) \sin \pi \lambda}{\pi \Gamma(\alpha + 1) \Gamma(\lambda + 1)} \hat{k}^{(\alpha, -\alpha)}(\cdot, h)(0) - \\
&- \sum_{n=1}^{\infty} \frac{\lambda(\lambda+1)(2n+1) \Gamma(\lambda + \alpha + 1) \sin \pi(\lambda - n)}{\pi(\lambda - n)(\lambda + n + 1) \Gamma(\lambda + 1) n(n+1) \Gamma(\alpha + 1)} \\
&+ \sum_{n=1}^{\infty} \frac{\lambda(\lambda+1)(2n+1) n! \Gamma(\lambda + \alpha + 1) \sin \pi(\lambda - n) P_n^{(\alpha, -\alpha)}(h)}{\pi(\lambda - n)(\lambda + n + 1) \Gamma(n + \alpha + 1) \Gamma(\lambda + 1) n(n+1)} \quad (3.4)
\end{aligned}$$

From (2.7) we now have

$$\hat{P}_{\lambda}^{(\alpha, -\alpha)}(0) = \frac{1}{2} \int_{-1}^1 (1-x)^{\alpha} (1+x)^{-\alpha} P_0^{(\alpha, -\alpha)}(x) P_{\lambda}^{(\alpha, -\alpha)}(x) dx$$

which together with the above expression for $\hat{P}_{\lambda}^{(\alpha, -\alpha)}(h)$ yields

$$\begin{aligned}
\hat{P}_{\lambda}^{(\alpha, -\alpha)}(0) &= \frac{1}{2} \int_{-1}^1 (1-x)^{\alpha} (1+x)^{-\alpha} \left[\frac{\Gamma(\lambda + \alpha + 1)}{\Gamma(\alpha + 1) \Gamma(\lambda + 1)} \right. \\
&\left. - \frac{\Gamma(\lambda + \alpha + 1) \sin \pi \lambda}{\pi \Gamma(\alpha + 1) \Gamma(\lambda + 1)} \hat{k}^{(\alpha, -\alpha)}(x, h)(0) \right. \\
&\left. - \sum_{n=1}^{\infty} \frac{(2n+1) \lambda(\lambda+1) \Gamma(\lambda + \alpha + 1) \sin \pi(\lambda - n)}{\pi(\lambda - n)(\lambda + n + 1) \Gamma(\lambda + 1) n(n+1) \Gamma(\alpha + 1)} \right. \\
&\left. + \sum_{n=1}^{\infty} \frac{(2n+1) \lambda(\lambda+1) \Gamma(\lambda + \alpha + 1) \sin \pi(\lambda - n) P_{\lambda}^{(\alpha, -\alpha)}(x)}{\pi(\lambda - n)(\lambda + n + 1) \Gamma(n + \alpha + 1) \Gamma(\lambda + 1) n(2n+1)} \right] dx
\end{aligned}$$

Using Euler's formula [5]

$$\int_0^x (x-t)^\alpha t^\beta dt = \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} x^{\alpha+\beta+1}, \quad \alpha, \beta > -1 \quad (3.5)$$

with $\alpha + \beta = 0$, $t = 1+x$, we obtain

$$\int_{-1}^1 (1-x)^\alpha (1+x)^{-\alpha} dx = 2\Gamma(\alpha+1)\Gamma(1-\alpha).$$

This together with Lemma 3.1 yields

$$\begin{aligned} \hat{P}_\lambda^{(\alpha, -\alpha)}(0) &= \frac{\Gamma(1-\alpha)\Gamma(\lambda+\alpha+1)}{\Gamma(\lambda+1)} - \\ &- \sum_{n=1}^{\infty} \frac{\lambda(\lambda+1)(2n+1)\Gamma(1-\alpha)\Gamma(\lambda+\alpha+1)\sin\pi(\lambda-n)}{n(n+1)\pi(\lambda-n)(\lambda+n+1)\Gamma(\lambda+1)} \\ &- \frac{\Gamma(\lambda+\alpha+1)\sin\pi\lambda}{2\pi\Gamma(\alpha+1)\Gamma(\lambda+1)} \int_{-1}^1 (1-x)^\alpha (1+x)^{-\alpha} \frac{1}{2\alpha} (1-x) dx \\ &+ \frac{\Gamma(\lambda+\alpha+1)\sin\pi\lambda}{2\pi\Gamma(\alpha+1)\Gamma(\lambda+1)} \int_{-1}^1 \frac{(1-x)^\alpha (1+x)^{-\alpha} (1+x)^\alpha (1-x)^{-\alpha}}{2\alpha} \int_x^1 \frac{(1-t)^\alpha}{1+t} dt dx \\ &+ \sum_{n=1}^{\infty} \frac{\lambda(\lambda+1)(2n+1)n!\Gamma(\lambda+\alpha+1)\sin\pi(\lambda+n)}{\pi(\lambda-n)(\lambda+n+1)\Gamma(n+\alpha+1)\Gamma(\lambda+1)n(n+1)} \cdot \\ &\cdot \frac{1}{2} \int_{-1}^1 (1-x)^\alpha (1+x)^{-\alpha} P_n^{(\alpha, -\alpha)}(x) dx. \end{aligned}$$

The last term in the above expression vanishes by the orthogonality of the Jacobi polynomials; that is,

$$\begin{aligned} \int_{-1}^1 (1-x)^\alpha (1+x)^{-\alpha} P_n^{(\alpha, -\alpha)}(x) dx &= \\ &= \int_{-1}^1 (1-x)^\alpha (1+x)^{-\alpha} P_0^{(\alpha, -\alpha)}(x) P_n^{(\alpha, -\alpha)}(x) dx = 0 \end{aligned}$$

Moreover, using (3.5), the third term can be written

$$\frac{1}{2} \int_{-1}^1 (1-x)^{\alpha+1} (1+x)^\alpha dx = \Gamma(\alpha+2)\Gamma(1-\alpha).$$

Therefore,

$$\begin{aligned} \hat{P}_\lambda^{(\alpha, -\alpha)}(0) &= \frac{\Gamma(1-\alpha)\Gamma(\lambda+\alpha+1)}{\Gamma(\lambda+1)} - \\ &- \sum_{n=1}^{\infty} \frac{\lambda(\lambda+1)(2n+1)\Gamma(1-\alpha)\Gamma(\lambda+\alpha+1)\sin\pi(\lambda-n)}{n(n+1)\pi(\lambda-n)(\lambda+n+1)\Gamma(\lambda+1)} - \\ &- \frac{\Gamma(\lambda+\alpha+1)\sin\pi\lambda}{2\pi\Gamma(\lambda+1)\Gamma(\alpha+1)\alpha} \Gamma(\alpha+2)\Gamma(1-\alpha) + \\ &+ \frac{\Gamma(\lambda+\alpha+1)\sin\pi\lambda}{4\pi\Gamma(\lambda+1)\Gamma(\alpha+1)\alpha} \int_{-1}^1 \int_x^1 \frac{(1-t)^\alpha}{1+t} dt dx. \end{aligned} \quad (3.6)$$

From (2.6), (2.7) and the identity $P_n^{(\alpha, \beta)}(-x) = (-1)^n P_n^{(\beta, \alpha)}(x)$, it follows that

$$\hat{P}_\lambda^{(\alpha, -\alpha)}(0) = \frac{\Gamma(\lambda + \alpha + 1) \Gamma(1 - \alpha) \sin \pi \lambda}{\pi \lambda (\lambda + 1) \Gamma(\lambda + 1)}, \quad \lambda \neq 0, \quad \lambda \geq -\frac{1}{2} \quad (3.7)$$

Hence by the uniqueness of the Jacobi transform, we have from (3.6) and (3.7),

$$1 - \sum_{n=1}^{\infty} \frac{\lambda(\lambda+1)(2n+1) \sin \pi(\lambda-n)}{n(n+1)\pi(\lambda-n)(\lambda+n+1)} - \frac{\alpha+1}{2\alpha} \frac{\sin \pi \lambda}{\pi} +$$

$$+ \frac{\sin \pi \lambda}{4\pi \alpha \Gamma(1+\alpha) \Gamma(1-\alpha)} \int_{-1}^1 \int_x^1 \left(\frac{1-t}{1+t}\right)^\alpha dt dx = \frac{\sin \pi \lambda}{\pi \lambda (\lambda+1)}$$

Now (3.4) can be expressed as

$$\frac{\Gamma(\lambda+1) \lambda(\alpha+1)}{\Gamma(\lambda+\alpha+1)} P_\lambda^{(\alpha, -\alpha)}(x) =$$

$$= \lambda(\lambda+1) \sum_{n=1}^{\infty} \frac{(2n+1)n! \sin \pi(\lambda-n) P_n^{(\alpha, -\alpha)}(x)}{n(n+1)(\alpha+1)_n \pi(\lambda-n)(\lambda+n+1)} +$$

$$+ \frac{\sin \pi \lambda}{\pi} \left[\frac{1}{\lambda} + \frac{1}{\lambda(\lambda+1)} - \frac{\int_{-1}^1 \int_x^1 (1-t)^\alpha (1+t)^{-\alpha} dt dx}{4\alpha \Gamma(\alpha+1) \Gamma(1-\alpha)} + \right.$$

$$\left. + \frac{x}{2\alpha} + \frac{1}{2\alpha} \left(\frac{1+x}{1-x} \right)^\alpha \int_x^1 \left(\frac{1-t}{1+t}\right)^\alpha dt \right].$$

By interchanging the order of integration and by (3.5) we obtain

$$\int_{-1}^1 \int_x^1 (1-t)^\alpha (1+t)^{-\alpha} dt dx = 2\Gamma(1+\alpha) \Gamma(2-\alpha)$$

Thus,

$$\frac{\Gamma(\lambda+1) \Gamma(\alpha+1)}{\Gamma(\lambda+\alpha+1)} P_\lambda^{(\alpha, -\alpha)}(x) =$$

$$= \lambda(\lambda+1) \sum_{n=1}^{\infty} \frac{(2n+1)n! (-1)^n \sin \pi \lambda P_n^{(\alpha, -\alpha)}(x)}{n(n+1)(\alpha+1)_n \pi(\lambda-n)(\lambda+n+1)}$$

$$+ \frac{\sin \pi \lambda}{\pi} \left[1 + \frac{1}{\lambda(\lambda+1)} - \frac{1}{2\alpha} + \frac{x}{2\alpha} + \frac{1}{2\alpha} \left(\frac{1+x}{1-x} \right)^\alpha \int_x^1 \left(\frac{1-t}{1+t}\right)^\alpha dt \right]. \quad (3.8)$$

The series representation of the Jacobi function $P_\lambda^{(\alpha, -\alpha)}(x)$ will be completed once we obtain an equivalent expression for the integral.

$$f(x; \alpha) = \int_x^1 \left(\frac{1-t}{1+t}\right)^\alpha dt.$$

Lemma 3.2. For $-\frac{1}{2} < \alpha < \frac{1}{2}$, ($\alpha \neq 0$), we have

$$a) \quad f(x; \alpha) = \frac{(1-x)^{\alpha+1}}{(1+x)^\alpha} \left(1 - \frac{2\alpha}{1+x} \sum_{n=1}^{\infty} \frac{(-1)^n}{\alpha+n+1} \left(\frac{1-x}{1+x}\right)^n\right), \quad 0 \leq x < 1$$

$$b) \quad f(x; \alpha) = \frac{2\pi\alpha}{\sin\pi\alpha} - \frac{(1-x)^\alpha}{(1+x)^{\alpha-1}} \left(1 - \frac{2\alpha}{1-x} \sum_{n=1}^{\infty} \frac{(-1)^n}{\alpha-n-1} \left(\frac{1+x}{1-x}\right)^n\right), \quad -1 < x < 0$$

Proof: a) Integration by parts yields the recursive relation

$$f(x; \alpha) = \frac{1}{\alpha+1} \frac{(1-x)^{\alpha+1}}{(1+x)^\alpha} - \frac{\alpha}{\alpha+1} f(x; \alpha+1).$$

By employing this relation and after simplification, we obtain

$$f(x; \alpha) = \frac{(1-x)^{\alpha+1}}{(1+x)^\alpha} \left(1 - \frac{2\alpha}{1+x} \sum_{n=0}^{\infty} \frac{(-1)^n}{n+\alpha+1} \left(\frac{1-x}{1+x}\right)^n\right)$$

The series converges for all x such that $|\frac{1-x}{1+x}| < 1$; that is, if $0 \leq x < 1$. When $x = 0$,

$$f(0; \alpha) = 1 - 2\alpha \sum_{n=0}^{\infty} \frac{(-1)^n}{n+\alpha+1}.$$

b) We rewrite $f(x; \alpha)$ as

$$f(x; \alpha) = \int_x^0 \left(\frac{1-t}{1+t}\right)^\alpha dt + \int_0^1 \left(\frac{1-t}{1+t}\right)^\alpha dt = J(x; \alpha) + f(0; \alpha), \text{ say.}$$

By introducing

$$J^*(x; \alpha) = \int_{-1}^x \left(\frac{1-t}{1+t}\right)^\alpha dt$$

$J(x; \alpha)$ can be written as

$$J(x; \alpha) = J^*(0; \alpha) - J^*(x; \alpha).$$

Upon an integration by parts, we obtain

$$J^*(x; \alpha) = \frac{1}{1-\alpha} \frac{(1-x)^\alpha}{(1+x)^{\alpha-1}} + \frac{\alpha}{1-\alpha} J^*(x; \alpha-1)$$

Repeating the above formula, recursively, results in the series.

$$J^*(x; \alpha) = \frac{(1-x)^\alpha}{(1+x)^{\alpha-1}} \left(1 - \frac{2\alpha}{1-x} \sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha-n-1} \left(\frac{1+x}{1-x}\right)^n\right)$$

which converges for all x such that $|\frac{1+x}{1-x}| < 1$; that is, for $-1 < x < 0$.

When $x = 0$,

$$J^*(0; \alpha) = 1 - 2\alpha \sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha-n-1}.$$

Thus,

$$\begin{aligned}
 f(x; \alpha) &= J^*(0, \alpha) + f(0, \alpha) - J^*(x; \alpha) \\
 &= \frac{2\pi\alpha}{\sin\pi\alpha} - \frac{(1-x)^\alpha}{(1+x)^{\alpha-1}} (1 - \frac{2\alpha}{1-x}) \sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha-n-1} \left(\frac{1+x}{1-x}\right)^n
 \end{aligned}$$

which completes the verification of Lemma 3.2.

From (3.8) and Lemma 3.2, the representation of the Jacobi function $P_\lambda^{(\alpha, -\alpha)}(x)$ will follow. In particular, for $\lambda \geq -\frac{1}{2}$ ($\lambda \neq 0$)

$$\begin{aligned}
 P_\lambda^{(\alpha, -\alpha)}(x) &= \frac{\Gamma(\lambda+\alpha+1)}{\Gamma(\lambda+1)\Gamma(\alpha+1)} \frac{\sin\pi\lambda}{\pi} \{ \lambda(\lambda+1) \cdot \\
 &\cdot \sum_{n=1}^{\infty} \frac{(2n+1)n!(-1)^n}{n(n+1)(\alpha+1)_n} P_n^{(\alpha, -\alpha)}(x) + 1 + \frac{1}{\lambda(\lambda+1)} - \\
 &- \sum_{n=0}^{\infty} \frac{(-1)^n}{n+\alpha+1} \left(\frac{1-x}{1+x}\right)^{n+1} \}, \quad 0 \leq x < 1;
 \end{aligned}$$

and

$$\begin{aligned}
 P_\lambda^{(\alpha, -\alpha)}(x) &= \frac{\Gamma(\lambda+\alpha+1)}{\Gamma(\lambda+1)\Gamma(\alpha+1)} \frac{\sin\pi\lambda}{\pi} \{ \lambda(\lambda+1) \cdot \\
 &\cdot \sum_{n=1}^{\infty} \frac{(2n+1)n!(-1)^n}{n(n+1)(\alpha+1)_n} P_n^{(\alpha, -\alpha)}(x) + 1 + \frac{1}{\lambda(\lambda+1)} - \frac{1}{\alpha} + \\
 &+ \frac{(1+x)^\alpha}{(1-x)^\alpha} \frac{\pi}{\sin\pi\alpha} + \sum_{n=0}^{\infty} \frac{(-1)^n}{\alpha-n-1} \left(\frac{1+x}{1-x}\right)^{n+1} \}, \quad -1 < x < 0.
 \end{aligned}$$

The above representations will hold for $\lambda = 0$ provided that $\frac{\sin\pi\lambda}{\pi\lambda}$ is interpreted to be equal to 1 for $\lambda = 0$. When $\alpha = 0$, the formula reduces to that for Legendre functions derived in [3], provided that $-\frac{1}{\alpha} + \frac{(1+x)^\alpha}{(1-x)^\alpha} \frac{\pi}{\sin\pi\alpha}$ is given its limiting value of 0 as $\alpha \rightarrow 0$.

REFERENCES

- [1] Deeba, E.Y. and E.L. Koh, The continuous Jacobi transform, Internat. J. Math and Math. Sci. Vol. 6, No. 1 (1983), 145-160.
- [2] Deeba, E.Y. and E.L. Koh, The second continuous Jacobi transform, Internat. J. Math and Math Sci. (to appear).
- [3] Butzer, P.L., R.L. Stens and M. Wehrens, The continuous Legendre transform, its inverse transform and applications, Internat. J. Math and Math Sc. Vol. 3, No. 1 (1980), 47-67.

- [4] Debnath, L., On Jacobi transform, Bull. Calc. Math. Soc., Vol. 55 (1963), 113-120.
- [5] Luke, Y.L., The Special Functions and Their Applications, Vol. I, Academic Press, New York, 1969.
- [6] Erdelyi, A., W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw Hill, New York, 1953.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk