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Abstract: Recently, the continuous Jacobi transform and its inverse

are defined and studied in [i] and [2]. In the present work, the

transform is used to derive a series representation for the Jacobi

functions Pe’) (x) -% <e, 1/2, e + =0, and I ->-1/2. The case

e = =0 yields a representation for the Legendre functions and has been

dealt with zn [3]. When I is a positive integer n, the representation

reduces to a single term, viz., the Jacobi polynomial of degree n.
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i. Introduction. The continuous Jacobi transform and its inverse

were introduced and studied in [i] and [2] These transforms genera-

lize the work of Butzer, Stens and Wehrens [3] on the continuous

Legendre transform and the work of Debnath [4] on the discrete Jacobl

transform. In [2] an application to sampling technique was given. In

the present work, the continuous Jacobl transform is used to derzve a

representation of Jacobi functions P’)(x). The representa-series

tion includes that for the Legendre function given in [3]. When 1

is a positive integer, the representation reduces to the Jacobi

polynomial (see e.g. [5])
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2. Preliminaries. In this section we review material needed in the

development of the paper.

For e, B >-i, I eR, I +e +8 0,-I,-2 and x e (-i,i], the Jacobi
(e,8) (x) is given byfunction of the first kind, P1

F (l+e+l) lxp e,8)
(x) =F(I+I)F(e+I) F(-1,1+e+8+l; e+l; (2.1)

(see [6]) where

(a)k(b)k kF(a,b;c;z) k=O[ ,’Ckk’. z Izl I,

a,b,c real numbers with c 0,-i,-2,

(,8) F(-I+I)F(I--8) p( 8) (x) we maySince Pl (x)
F(I-A)F(I-8) I--8-i

restrict ourselves to i>_ e+8+12 The function pe,8)(x) satisfies the

following relations:

d
-x 2 d e )d--(w(x) (I )- P (x)) =-I(I++8+i) w(x)P’) (x) (2.2)

F (I++i)p ,8)
(i)

F(I+I)F(e+I) (2.3)

and

d e,8) l(a-B) Ix) (e,8)
(x)(l-x2) P (x) (21+e+8 P1

+ 2(l+e) (I+8) pe 8)
21+e+8

_
(x). (2.4)

For a proof of (2.2), (2.3) and (2.4) see [i]. The term w(x) in (2.2)

is the weight function w(x) (1-x) e(l+x) 8 and will be used throughout

+8+I andthe paper. Furthermore, it was shown in [i] that for I a
2

for any x e (-i,I].

2< F(I++I)
+M(I e 8)log (2 5)F (I+1) F (e+l)

where M(I,,B) is some constant depending upon I, e and 8; and for

any I, >-+S+l u, -(u++8+l) e >-1/2, -1/2 <8 < 1/2 we have the

relation

1 i ( 8)w(x)
2e+B+l J-i PI (x)P(8’) (-x)dx (2.6)

F (l+c,+l) F (+8+I)
F(l-Sil+v+e+B+l)

sin I
r (u+l) F (l+(,+B+l)

sin
(I+1) r (u+e+8+l)
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We shall denote, throughout, the weighted square integrable

functions on (-I,i) by Lw2(-l,l) For f e L2(-I,I) > -%, -1/2 8 1/2,w

the continuous Jacobi transform (see [i]) is defined by

(,B) (I) 1 1
w(x)p ,B)

(x)f(x)dx2+8+i -i

When = =0, (,8) reduces to the continuous Legendre transform

studied in [3] and whe, l=n e P (P, the set of non-negative integers),

reduces to the discrete Jacobi transform of Debnath [4].

It was shown in [i] that if 11/2f (e’8) (I-1/2)eLI(R+) and if e+8 =0

then for almost every x e (-i,i), we obtain the inversion formula

(2.7)

where

f(x) 4 (e,S) (I-!)
I-% (-x)H0p(e,8) (I) IsinIdl

0
(2.8)

H ()
0

2F (I+1/2)
F (I++1/2) F (I+8+1/2)

Since we needed the condition +8 =0 to derive (2.8), we shall,

from now on, assume this condition on and 8.

-+1/2

In [2] the second continuous Jacobi transform was studied.

f6LI(R+), it is given by

For

(-x) F(I1/2)
IsinldlF (++1/2) (2.9)

and the associated inversion formula is

f(1) 1/2 F(I++1/2) [ 1 w(x) P
e 8) (e 8)

F(I+1/2)
-i

_
(x) f (x)dx (2.10)

The relation between the different transforms (see [2]) is

(^f(,8) (.))^(e,8) (I) 2F(l+e+1/2) f(1)F (I+1/2)

and

(+1/2) ( 8) ( S)
(F (l+e+1/2) (’)) (x) f(x)

As an application of (2.9) and (2.10), it was shown in [2] that

if FC(R+) is given by

1
F(1)

-i
w(x)f(x)P((X’8)

I-1/2
(x)dx
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for some U 0, feL2w(-l,l), then for all leR+, we have

n+1/2F(1) n[0 (2n+l)F(n+l)F(l+e+1/2)sinn(l-(n+1/2))
F(---)(A2 2 2-(n+1/2) )F(n++I)F(I+1/2)

(2.11)

We will employ (2.7), (2.8), (2.9) and (2.10) to derive the

representation formula of the Jacobi functions.

(,_)we shall write P ’)(x) as Pl (x).

3. Derivation of the Representation Formula.

Since e + 8 0,

Again, throughout this

section we shall assume e+ 0, -1/2 e, 8 1/2 and , 0. The case =0

reduces to the representation of the Legendre functions and has been

developed in [3].

The series representation that we will develop, in this section,

(,-)
for P (x) is

F (A+I) sinlP ’ )
(x)

F(A+I)F(+I)

(2n+l)n! (-l)np (e’-e)
(x)nI (I+i)

n(n+l) (+i) n(-n) (A+n+l) + i
n=l

I(+I)

n
[ (-i)

n=0
e+n+ 1

l-x n+ 1
(i--/) }, 0 -<x i, (3.1)

and

(’-e)
(x) F(A++I) sinl

Pl F(A+I)F(+I)

(2n+l)n! (-l)np(e’-) (x)
n{X(A+I)n=I n(n+l) (+I) n(A-n) (A+n+l) + i+I (l+l)

i+ l+x, e
+

(-l)n ,l+x,n+l
(_--/i7+/-_^ sinn------ e-n-I (---/’ -i x -< O.

n=0
(3.2)

In order to derive (3.1) and (3.2), we shall first introduce an

auxillary function k(x;h), apply (2.7), (2.9) to k(x;h) and utilize

the uniqueness of the Jacobi transform.

Lemma 3. i.

Then

For he(-l,l) define

i [(l+x.
e l+h,

k(x;h)

h_<x<l,

-l<x-<h
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(’-) (x;h) (1)

1 F(l+e+l) p,-e)l(l+l)
(h)}, I0, la-1/2

1 h (l+h, [
I l-x

--2e - h(l--)dx}’ I=0.

Proof. (2.2) together with (2.7) yields for 1,0 and e+8 =0

I
[(e,-e) (-;h)(I) =1/2 (l-x) e(l+x)

J-i

(l-x) (l+x)1/21(l+l)
-I

pe,-e) (x)k(x;h)dx

d ed- P (x))k(x;h)dx.

On integrating by parts, we obtain

(e,-e) (. ;h) (I)
l(l+l)

h
p e,-s)

(x)dx

from which it follows that for l0, I >-1/2

1 -e) e -)(e, e)
(. ;h) (I) l(---{P (1)-P (h)

Equivalently,

1 (l+e+l) e -){(a,-e) (. ;h) (1) I(I+1) F(I+I)F(+I) P (h)

from (2.3)

(e,-a)
(x)=i This together with (2.7) yieldsWhen I 0, P0

(’-) (-;h)(0) =1/2I (l-x)e(l+x)-ek(x;h)dx
1

i
1 l+x, e l+h, e:1/2 (l-x) e(l+x)-e{[ im-{; -i:;" ]]dx

Jh

1 l+h, I 1
(l-x)=2-- [1-h-(; h lx

dx].

This completes the proof of Lemma 3.1.

Since 11/2k (’-) (’,h)(I-1/2)LI(R+) and since k(x;h) is continuous

on (-i,i) it follows from (2.8) and Lemma 3.1 that for I 0

k(x;h) =4[ 1

0 12-%
F(I+1/2) F 2(l+1/2)Pei-e)’-_ (h)

).F (l-e+1/2) F (e+l) -Y(X+’e+1/2)F (X"a+1/2)

(-e,c)
Pl-1/2 (-x)IsinIdl. (3.3)

From (2.11) with =i, o -> 0, h6 (-i,I) and Lemma 3.1, we have
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k (a,-a) (-.h) (o-1/2) =o"2- r(o+1/2)r(a+1/2)

r (o+a+1/2) (a’-) (" ;h) (0) sin (o-1/2) +2
(o -1/4) r (o+1/2) r (e+l)

+ (2n+l) r (n+l) r (o+a+1/2) sin (o-n-1/2) 1
2 2 n (n+l)n=l (o -(n+1/2) )r(n+e+l)r(o+1/2)

[r(n+e+l) _p(e,-e) (xI[_r (e +i) n.’ n

where
(e,-e) (- ;h) (0) is as given in Lemma 3.1. Replacing o by X+1/2

in the above expression together with Lemma 3.1 and the uniqueness of

the Jacobi transform imply

1 V r (X+e+l)
i(I+1) [re+l)r(1+1)

(e,-e) (h)] r(1+e+l)sinnl k (e,-e)
(x;h)(0)PI (I) (I+1) r (a+l) r (I+1)

(2n+l) r (n+l) r (1+e+l) sin (l-n)v+ / w (l-n) (1+n+l) r (n+e+l) F (I,1)n=l

Therefore,

1 [ r (n+e+l) p(e,-e) (x)jn (n+l) r (e+l) n.’ n

r (1+e+l)p e, e)(h)=r(e+l)r(1+l) r(l+e+l)sinw1 (e’-e) (.,h) (0)
r (e+l) r (I-1)

I(+i) (2n+l)r (1+e+l)sinn(1-n)[ (1-n) (1+n+l)r(1+l)n(n+l)r(e+l)n=l

I(I+1) (2n+l)n’.r(1+e+l)sin(1-n)P (a’-e) (h)
n+

(l-n) (1+n+l) r (n+e+l) r (1+l)n(n+l)n=l
(3.4)

From (2.7) we now have

Pi
e’-a)

(0) 1/2 (l-x) (l+x) --J-i 0 (x)P

which together with the above expression for P ’-)

1

-i a+l)r(+l)

(x)dx

(h) yields

r (1+e+l) sinl (e’-e) (x,h) (0)
r (+l) r (l+l)

(2n+l) I (l+l) r (l+o+l)sin (l-n)
(-n) (l+n+l) r (I+i) n (n+l) r ((+i)

(2n+l) I (l+l) r (l+o+l) sinn (l-n) p(,-e)
,(-n) (l+n+l)r (n+e+l)r (l+l)n(2n+l)

(x)
dx
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Using Euler’s formula [5]

x
t(x-t) dt

0

F(e+l) F(B+I) x+B+lF (+8-2) 8 >-i (3.5)

with + 8 O, t 1 +u, we obtain

i
(l-x) (l+x)

J-i
dx 2F(e+l)F(1-s)

This together with Lemma 3.1 yields

r (i-) r (l+e+l)(0)
r(>+l)

(l+l) (2n+l) F (i-) F (l++l) sinn (A-n)

n= I n (n+l)n (l-n)(l+n+l) F (I+i)

F(l+e+l)sinnl Ii (l-x) (l+x) -e
(l-x) dx2F (e+l) F (+i)

-i

F (I++i) sinl fl (l_x) a
(l+x) - (l+x) (l_x) -a [i+ 2F (+i) F (I+i)

-i 2 Jx
+ I (I+i) (2n+l) n F (I++I) sinn (l+n)g

n=l (l-n) (l+n+l) F(n++l)F(l+l)n(n+l)

1/2 (1-x)a(l+x)-a p(’-a) (x) dx.
-i n

l-t ad(i-6) t dx

The last term in the above expression vanishes by the orthogonality

of the Jacobi polynomials; that is,

iI (1-x)e(l+x) - P(’-) (x)dx
-i n

1I (-x)(+x) - ’-)(x)P (’-) (x)dx o
-i

n

1oreover, using (3.5) the third term can be written

(l-x) (l+x)dx F(+2)F(I-).

There fore,

^ -) r(l-) r(l++l)P (0) P(-I+I)

l(l+l) (2n+l) F(I-) F(l+e+l)sin(l-n)
n(n+l)(l-n) (l+n+l) F(l+l)

_F (I++i) sinnl
2F (’I+i) F (+i) e F(+2) F(I-) +

F(l++l)sinl !i Ii l-t e
4F(l+l)F(c+l)a

-1 x
(-$-) dtdx. (3.6)
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From (2.6) (2.7) and the identity p (’8)
n

it follows that

n (S ,a)(-x) (-I) p
n (x)

(3.7)

Hence by the uniqueness of the Jacobi transform, we have from (3.6)
and (3.7)

k(l+l) (2n+l)sin (h-n)
n (n+l) n (l-n) (k+n+l)

sin Ii Ii l_t ad+ 4-aF (l+a) F (i-)
-I x(-) t

Now (3.4) can be expressed as

F(k+l)X(a+l) p(e,-e) (x)F (l+a+l)

sin X

X (k+l) [
n=l

((,--)(2n+l) n sin (l-n) P
n (x)

n(n+l) (e+l) (l-n) (l+n+l)n

sinnl 1+ | ! +

1
(l_t) (l+t) -edtdx

4F (u+l) r (l-e)

x a l+x)a[l+h-+ 1-- x

l-t e
d :.(i-) t

By interchanging the order of integration and by (3.5) we obtain

1 1
(l+t)-edtdx 2r(l+a)F(2-e)

Thus,

P(l+l)F(e+l) p(,-e) (x)F (l+a+l)

(2n+l)n’ I) n (e-e)
sinIP (x)

) (l+l) [ n(n+l) (e+l)
n

n

n=l (kn) (l+n+l)

+ sinl 1 I +x _i l+x.f 1
1+- (l-t

k(l+l) 2a - +zj(T T$-) dt;.: (3.8)
x

The series representation of the Jacobi function Pe’-e)(x) will be

completed once we obtain an equivalent expression for the integral.

i
l-t) edf(x;) (i t

x
Lemma 3.2. For -% a %, (a 0) we have
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a) f (x;) (l-x) +i 2e
a l+x(l+x) n=l

(-i)
n
.l-x) n)+n+l[l--x 0 -<x 1

2e (l-x) e 2 [ (-l)n l+x.nb) f (x;e)
sine (l+x) -i

(i
l-x n=l

e-n-i (-C; -i x 0

Proof: a) Integration by parts yields the recursive relation

1 (l-x) e+l e f (x; +i)f (x;e)
e+l e :.+i(l+x)

By employing this relation and after simplification, we obtain

f(x;)
(1-x)+l 2e (-l)n 1-x)n
(l+x) e

(I I+ n=0’" n+e+l (i--

l-x
The series converges for all x such that l--x < i;

0 x < i. When x =0,

that is, if

(_l)n
f(0;e) l-2e [ n++l"n=0

b) We rewrite f(x; as

f (x;) I 0 l_t) ed I I l-t e
(- t + (-) dt J(x;e) + f(0,e), say.

x 0

5y introducing

x
l-t edJ* (x;e) (-) t

J-I

J(x;) can be written as

J(x;e) J*(0;) -J*(x;e).

Upon an integration by parts, we obtain

1 (l-x)
J*(x;e) I---- (l+x)-I + J*(x;e-l)

Repeating the above formula, recursively, results in the series.

J*(x;) (l-x) 2e [ (-l)n .l+x,n)
(l+x)-I

(i
l-x n=0

s-n-I [;

l+x
which converges for all x such that II < i; that is, for-i < x < 0.

When x 0,

J*(0;e) 1 2e
(-I) n

e-n-In=O
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Thus,

f(x;) J*(0,e) + f(0,) -J*(x;)

2e (l-x) e
2e (-i) n l+x.nsinne

(l+x) -I
(i I---- n=0[’ --------n-i (I--)

which completes the verification of Lemma 3.2.

From (3.8) and Lemma 3.2, the representation of the Jacobi

function P’-e)(x) will follow. In particular, for I _-1/2 (l 0)

F(l+e+l) sinl {l(l+l)p e, e)
(x) F(I+I)F(+I)

(2n+l) n.’ (-l)np (e’-) (x)
?, n

nll n(n+l) (e+l)n(l-n) (l+n+l) +I+I (l+l)

and

(-l)n
n++ln=0

l-x) n+ 1
l--/x }’ 0-<x<l;

F (l+e+l) sinl {I (I+I)-P e’-e) (x) F(I+I)F(+I)

(2n+l)n.’ (-l)np (’-e) (x)
1 1[ (n+l)(+i)

n

n + 1 +------- +
n=l

(l-n) (l+n+l) l(l+l)

n(l+x) (-i) .l+x. n+l+ + , -I< <0e sin n’J^=u e-n-I -C; x
l-x)

The above representations will hold for I =0 provided that

sinl
is interpreted to be equal to 1 for I =0. When e =0, the

formula reduces to that for Legendre functions derived in [3],

n
is given its limiting value of 0 asprovided that-

1 + (l+x)

(l-x) sin

+0.

[i]

[2]

[3]
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