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ABSTRACT. In this paper we give some inequalities for regular functions f(z) =
= z+a222+... in lz|<1, especially for starlike and convex functions of order a,
0<:«<1. To some extent those inequalities are the generalisations and improvements
of the previous results given by Bernardi [1]. Some interesting consequences are

given, too.
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1. INTRODUCTION

Let A denote the class of functions f(z) = z+a222+... which are regular in the
unit disc E={z:|z|<1}.

For a function fFEA we say that it is starlike of order a, 0<a<1, in E, if

and only if
2f’ (z) S
f(z) ’

The class of such functions we denote by S*(a). It is evident that $*(a)< S¥, where

Re z€E. (1.1)

s* is the class of starlike functions in E.
Similarly, for a function f€A we say that it is convex of order a, 0<a<1, in
E, if and only if

Re{1+%,%}>a, 2€E. (1.2)

The class cf such functions we denote by K(a). In this case we have also that
K(x)€ K(0) =K, where K is the class of convex functions in E. It is well-known
that S* and K, are the subclasses of the class S of univalent functions in E [2].
In this paper we give some inequalities of the integ}al type for the functi-
ons of A, especially for the functions of the classes $*(a) and K(2), 0<a<1. For
special cases of those inequalities we have some improved inequalities of Bernardi

[1]. In this sense, our inequalities can be considered as the generalisations and
improvements of the corresponding inequalities of Bernardi.

For the proofs of the coming inequalities we will use the following result
of Miller [3]:

THEOREM A. Let ¢(u,v) be a complex function ¢ : D= C (C - complex plane, D -

domain in CxC), and let u= u]+iu2, v= vl+iv2. Suppose that the function ¢ satis-
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,.ed the next conditions:
(a) ®(u,v) is continuous in D;
(b) (1,0)¢ D and Re®(1,0) > 03 ,
(c) ReQ(uzi,vl)SO for all (uzi,vl)€ D and such that vy S-(1/2).(1+u2).

Let p(z) = 14p,z+... be regular in the unit disc E such that (p(z),zp’ (2)) <€D
for all z€E. If
Red (p(z), zp(z)) >0, z€E,
then Rep(z)>0, ze€E.

2. INEQUALITIES AND CONSEQUENCES
THEOREM 1. Let f€ A, a<1 and a>~-1. Then the following implication

f(z) a+tl 2 a-1 1-a
Re ><1$Re—aﬁ é t f(t)dt>0~+3+2a . Z€EE, (2.])
is true.
PROOF. Let’s put
1-0 arl 7 a-1
xli*m =g and —Zm,g t f(t)dt=8+(]-8)p(2). (2.2)

Then it is easily shown that <1, p is regular in E and p(0)=1. From (2.2) we ha-
ve that

a-1 za+]
tS f(t)dt= 7

[g+(1-8)p(2)],

0N

and hence, after differentiation and some simple transformations, we have that

f(2)

z

-a=8-a+(1- B)p(Z)+ zp’(2). (2.3)
Since Re f(z—z)>0l, z€ E, then from (2.3) we get

Re {8 -a + (1- B)p(z)+ zp’(z)}>0, z€E. (2.4)

Now we may consider the function

-8

¢(u,v) =B-a+ (1- B)u+ P

\'

(it is noted u=p(z), v=2zp’(z)). It is directly checked that the function ¢ sati-
sfies the conditions (a), (b) and (c) of Theorem A. Namely, in this case it is

D= C2%, ¢ is continuous in D, (1,0)€ D, Re6(1,0)=1-0a>0, while for all
(uzi,v])GD such that v]<-(l/2)~(1+u§) we have that

. 1- -
Red (uyi,v ) =8~ —a vy <p- (1.+ |-—(l+ )]=--;-]——B ug

a+l 1 a+l <0.
Therefore, by applying Theorem A we havé that Rep(z)>0, z€ E; hence using (2.2)
we finally get

r4
a+l a-1
Re ;aTlé' t f(t)dt>6, zZ€ E,

which was to be proved.
COROLLARY 1. If fe S*(a), %<n<1, then it is known [4] that
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and for those classes from Theorem 1 we have that

1-0

a+l Z a-1 !
L7 FOdt> 350+ 2 3oy aigay

Re a+l
z

z€E. (2.5)

Because fe K( e zf (z) € 5%(n), 0<:<1, is true, then from (2.5) for a=0

we get the following estimates for f€ K(u), l<n¢<l:

3
f(z) 5-24
>
Re 7 m (2.6)
COROLLARY 2. If f€K(a), 0<a<1, then from [5] we have
f(z) 1
Re 3 >——(—y3_281 =
where
20 -1 1
o I
,f,](A)_ 2(1-2 ) (2.7)
1 1
21092 °’ T2

and from Theorem 1

) 1- 8 (a)
+2
3-28, () 3-28, (o)) (3+2a)

pA
a+l a

-1
Re Za+] {)t f(t)dt>

, Z€EE. (2.8)
Especially, for ».=0, i.e. for f€ K, we have that B](O)=—;- and from (2.8):

a+l 7 a-1l 2+a
Za+1 {)t f(t)dt>-3+—za~ , 2€E, (29)

Re

which improves the earlier result of Bernardi [1], Th.8(A), where the constant or
the right side of (2.9) is equal to 1/2 (namely, %’tz%>% for a>-1).

If f¢ A and zf' (z2)€ K(a), 0<u<1, then from (2.8) for a=0 we have also that
f(2) 5-28,(a)

Re = 7 3053 G

Z€E, (2.10)

where r‘,](q) is defined by (2.7).
COROLLARY 3. If we put 2f’(z) in Theorem 1 instead of f€A we get that

. atl % a_s 1-u
.
Ref’(z)>a 2Re Lol ,:') tf (t)dt>a+3+Za , z€E, (2.11)
is true.
From (2.11) for a=0 we have that
Ref (2)>a Re 2L 5 241 e (2.12)
z 3

is true. From (2.12) by applying Theorem 1 once again we have that the following
implication

z
a+l a-1 2a+1 2
RS s I |

Ref’(z)>a=> Re z€E, (2.13)

is true for f¢ A, «<1 and a>-1.
THEOREM 2. Let f€ S*(a), 0<u<1, and let a>max{-1,-2a}, then we have that

Re —Z1(2) >Za"z"'"‘[ia"z“")2+8(a“) ., zE€E. (2.14)

z

ft

[e]

aTe(p)ae
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PROOF. The inequality (2.14) is equivalent to the inequality

. 2°%f(2) >2a+2a-l+\[(2.a+2rx-l)2+8(a+1) . zeE. (2.18)
" z ) L{a+1)
(a+1)5 27 6 (1) dt
(o]
Let’s‘put
a
27f(2) =g+ (1-g)p(2), (2.15)

z -1
(a+1)f @7 F(t)dt
o

2
where g is the number or the right side of the inequality (2.14). It is easy to
show that 0< <1, p(z) is regular in E (moreover, it can be shown that the func-

z
a+l fta
a

o
z -
may have the removable singularity in z=0) and p(0)=1. From (2.15) after logar-

tion f(t)dte s(a) if Fe S (a), 0<a<1, a>-1. Hence, the function p(z)

ithmic differentiation we may get

20D - o (@) imaar(ar) (1-8)ple) +(1-0) 72l
and since Re 5:—(5-1 > a, z€E, then
/
Rei (a+1)R-a-a+(a+1) (1-8)p(z)+(1-p) 8+21'(§Z; 5 }>0, z€E. (2.16)
In this case we consider the function
“’(“"’)=(a”)s’a'“*(‘3*')("6)”*("3)3—+(|\+Bm (2.17)

The function ¢ : D > C, where D= (C\ {- %})x C and ¢ is continuous in D. We have
also that (1,0)e D, Red(1,0) =1-a>0, while for all (uzi,v])é D so that
v,<-(1/z)(1+u§) we get
V1
Re ¢ (u,i,v,) = (a+1)B-a-a+(1-6)f ——-r
27
Bz+(|‘8)2u§

-(1/2)(1+u§)

2

< (a+1)B-a-a+(1-B)8 -5
B +(1-8) u;

- gy [142(a%a) -2 (a+1) 8] 2

87+(1-8)"uj
(we used the fact that 8 is the solution of the equation 2(a+l)82-(23+2m-1)8-l=0).
To prove that Re®(u2u,vl)<0 we must show that 1+2(a+a)-2(a+1)B>0, what is not dif-
ficult regarding the values for a,a and B. Therefore, from Theorem A and (2.16) we
have that Rep(z)>0, z€E, which is equfvalent to (2.1‘0’), i.e. (2.14).

COROLLARY 4. If fe K(a), 0<a <1, what is equivalent to zf’(z)€ $*(a), then

from (2.14) for a=0 we have that

v 262)  20- 1+ 2a- 1) 2+ 8
T

f(Z) N ZEE. (2.]8)

This is the former result given by Jack [6] .
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COROLLARY 5. If f& K then Re i;TzL)Z')'>% (21, (which also implies from (2.18)

for a=0) and because of that, from Theorem 2 we have

a+\/a2-+2a-+2
2 ’

2% (2)

z
a1

Jt
o

Re > Z€E, (2.19)

f(t)dt

which improves the former result of Bernardi [1], Th.7(B). Namely, the constant on

the right side of (2.19) in [1] is \*22

7 but

2 -
a+Vv a +2a+2 > 1+2a (© \/Ea+l)2+1 >a+1).

2 2
THEOREM 3. Let f€ K(x), 0<a<1, and a>max{-1,-2a}, then we have

Re z€ E. (2.20)

2f’ (2) S 2a+20-14v/ (2a+20-1) 2+8 (a+1)
N b
a z -
flz) -2 1 @ (o)t
22 o

PROOF. If f€ K(u) then zf’(z) € S¥(«), and by applying Theorem 2 to the func-
tion zf'(z) and partial integration in corresponding integral we have the state-
ment of Theorem 3.

COROLLARY 6. For a=0, i.e. for f€K, we have that

' 2
zf' (z) 2a-1+V(2a-1)“+8(a+1)
Re — > e , z€E,
fFlz) -2 fe@7 f(t)dt
2o

which also improves the result of Bernardi [1], Th.8(C).
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