

ON CERTAIN INEQUALITIES FOR SOME REGULAR FUNCTIONS IN $|z|<1$

MILUTIN OBRADOVIĆ

Department of Mathematics
Faculty of Technology and Metallurgy
University of Belgrade, Yugoslavia

(Received August 6, 1985)

ABSTRACT. In this paper we give some inequalities for regular functions $f(z) = z + a_2 z^2 + \dots$ in $|z|<1$, especially for starlike and convex functions of order α , $0 \leq \alpha < 1$. To some extent those inequalities are the generalisations and improvements of the previous results given by Bernardi [1]. Some interesting consequences are given, too.

KEY WORDS AND PHRASES. *Regular functions, Starlike functions of order α , Convex functions of order α , Inequalities.*

1980 AMERICAN SUBJECT CLASSIFICATION CODE. 30A32.

1. INTRODUCTION

Let A denote the class of functions $f(z) = z + a_2 z^2 + \dots$ which are regular in the unit disc $E = \{z : |z| < 1\}$.

For a function $f \in A$ we say that it is starlike of order α , $0 \leq \alpha < 1$, in E , if and only if

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha, \quad z \in E. \quad (1.1)$$

The class of such functions we denote by $S^*(\alpha)$. It is evident that $S^*(\alpha) \subseteq S^*$, where S^* is the class of starlike functions in E .

Similarly, for a function $f \in A$ we say that it is convex of order α , $0 \leq \alpha < 1$, in E , if and only if

$$\operatorname{Re} \{1 + \frac{zf''(z)}{f'(z)}\} > \alpha, \quad z \in E. \quad (1.2)$$

The class of such functions we denote by $K(\alpha)$. In this case we have also that $K(\alpha) \subseteq K(0) = K$, where K is the class of convex functions in E . It is well-known that S^* and K , are the subclasses of the class S of univalent functions in E [2].

In this paper we give some inequalities of the integral type for the functions of A , especially for the functions of the classes $S^*(\alpha)$ and $K(\alpha)$, $0 \leq \alpha < 1$. For special cases of those inequalities we have some improved inequalities of Bernardi [1]. In this sense, our inequalities can be considered as the generalisations and improvements of the corresponding inequalities of Bernardi.

For the proofs of the coming inequalities we will use the following result of Miller [3]:

THEOREM A. Let $\phi(u, v)$ be a complex function $\phi : D \rightarrow C$ (C - complex plane, D - domain in $C \times C$), and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that the function ϕ satis-

lled the next conditions:

- (a) $\phi(u, v)$ is continuous in D ;
- (b) $(1, 0) \in D$ and $\operatorname{Re}\phi(1, 0) > 0$;
- (c) $\operatorname{Re}\phi(u_2^i, v_1) \leq 0$ for all $(u_2^i, v_1) \in D$ and such that $v_1 \leq -(1/2) \cdot (1+u_2^2)$.

Let $p(z) = 1 + p_1 z + \dots$ be regular in the unit disc E such that $(p(z), zp'(z)) \in D$ for all $z \in E$. If

$$\operatorname{Re}\phi(p(z), zp'(z)) > 0, \quad z \in E,$$

then $\operatorname{Re}p(z) > 0$, $z \in E$.

2. INEQUALITIES AND CONSEQUENCES

THEOREM 1. Let $f \in A$, $\alpha < 1$ and $a > -1$. Then the following implication

$$\operatorname{Re} \frac{f(z)}{z} > \alpha \Rightarrow \operatorname{Re} \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f(t) dt > \alpha + \frac{1-\alpha}{3+2a}, \quad z \in E, \quad (2.1)$$

is true.

PROOF. Let's put

$$\alpha + \frac{1-\alpha}{3+2a} = \beta \quad \text{and} \quad \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f(t) dt = \beta + (1-\beta)p(z). \quad (2.2)$$

Then it is easily shown that $\beta < 1$, p is regular in E and $p(0) = 1$. From (2.2) we have that

$$\int_0^z t^{a-1} f(t) dt = \frac{z^{a+1}}{a+1} [\beta + (1-\beta)p(z)],$$

and hence, after differentiation and some simple transformations, we have that

$$\frac{f(z)}{z} - \alpha = \beta - \alpha + (1-\beta)p(z) + \frac{1-\beta}{a+1} z p'(z). \quad (2.3)$$

Since $\operatorname{Re} \frac{f(z)}{z} > \alpha$, $z \in E$, then from (2.3) we get

$$\operatorname{Re} \{ \beta - \alpha + (1-\beta)p(z) + \frac{1-\beta}{a+1} z p'(z) \} > 0, \quad z \in E. \quad (2.4)$$

Now we may consider the function

$$\phi(u, v) = \beta - \alpha + (1-\beta)u + \frac{1-\beta}{a+1} v$$

(it is noted $u = p(z)$, $v = zp'(z)$). It is directly checked that the function ϕ satisfies the conditions (a), (b) and (c) of Theorem A. Namely, in this case it is $D = \mathbb{C}^2$, ϕ is continuous in D , $(1, 0) \in D$, $\operatorname{Re}\phi(1, 0) = 1 - \alpha > 0$, while for all $(u_2^i, v_1) \in D$ such that $v_1 \leq -(1/2) \cdot (1+u_2^2)$ we have that

$$\operatorname{Re}\phi(u_2^i, v_1) = \beta - \alpha + \frac{1-\beta}{a+1} v_1 \leq \beta - \alpha + \frac{1-\beta}{a+1} [-\frac{1}{2}(1+u_2^2)] = -\frac{1}{2} \frac{1-\beta}{a+1} u_2^2 \leq 0.$$

Therefore, by applying Theorem A we have that $\operatorname{Re}p(z) > 0$, $z \in E$; hence using (2.2) we finally get

$$\operatorname{Re} \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f(t) dt > \beta, \quad z \in E,$$

which was to be proved.

COROLLARY 1. If $f \in S^{\pm}(\alpha)$, $\frac{1}{2} \leq \alpha < 1$, then it is known [4] that

$$\operatorname{Re} \frac{f(z)}{z} > \frac{1}{3-2\alpha}, \quad z \in E,$$

and for those classes from Theorem 1 we have that

$$\operatorname{Re} \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f(t) dt > \frac{1}{3-2\alpha} + 2 \frac{1-\alpha}{(3-2\alpha)(3+2\alpha)}, \quad z \in E. \quad (2.5)$$

Because $f \in K(\alpha) \Leftrightarrow zf'(z) \in S^*(\alpha)$, $0 \leq \alpha < 1$, is true, then from (2.5) for $a=0$ we get the following estimates for $f \in K(\alpha)$, $\frac{1}{2} \leq \alpha < 1$:

$$\operatorname{Re} \frac{f(z)}{z} > \frac{5-2\alpha}{3(3-2\alpha)} \quad (2.6)$$

COROLLARY 2. If $f \in K(\alpha)$, $0 \leq \alpha < 1$, then from [5] we have

$$\operatorname{Re} \frac{f(z)}{z} > \frac{1}{3-2\beta_1(\alpha)}$$

where

$$\beta_1(\alpha) = \begin{cases} \frac{2\alpha-1}{2(1-2^{1-2\alpha})}, & \alpha \neq \frac{1}{2} \\ \frac{1}{2\log 2}, & \alpha = \frac{1}{2} \end{cases} \quad (2.7)$$

and from Theorem 1

$$\operatorname{Re} \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f(t) dt > \frac{1}{3-2\beta_1(\alpha)} + 2 \frac{1-\beta_1(\alpha)}{(3-2\beta_1(\alpha))(3+2\alpha)}, \quad z \in E. \quad (2.8)$$

Especially, for $\alpha=0$, i.e. for $f \in K$, we have that $\beta_1(0)=\frac{1}{2}$ and from (2.8):

$$\operatorname{Re} \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f(t) dt > \frac{2+a}{3+2a}, \quad z \in E, \quad (2.9)$$

which improves the earlier result of Bernardi [1], Th.8(A), where the constant on the right side of (2.9) is equal to $1/2$ (namely, $\frac{2+a}{3+2a} > \frac{1}{2}$ for $a > -1$).

If $f \in A$ and $zf'(z) \in K(\alpha)$, $0 \leq \alpha < 1$, then from (2.8) for $a=0$ we have also that

$$\operatorname{Re} \frac{f(z)}{z} > \frac{5-2\beta_1(\alpha)}{3(3-2\beta_1(\alpha))}, \quad z \in E, \quad (2.10)$$

where $\beta_1(\alpha)$ is defined by (2.7).

COROLLARY 3. If we put $zf'(z)$ in Theorem 1 instead of $f \in A$ we get that

$$\operatorname{Re} f'(z) > \alpha \Rightarrow \operatorname{Re} \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f'(t) dt > \alpha + \frac{1-\alpha}{3+2a}, \quad z \in E, \quad (2.11)$$

is true.

From (2.11) for $a=0$ we have that

$$\operatorname{Re} f'(z) > \alpha \Rightarrow \operatorname{Re} \frac{f(z)}{z} > \frac{2\alpha+1}{3}, \quad z \in E, \quad (2.12)$$

is true. From (2.12) by applying Theorem 1 once again we have that the following implication

$$\operatorname{Re} f'(z) > \alpha \Rightarrow \operatorname{Re} \frac{a+1}{z^{a+1}} \int_0^z t^{a-1} f(t) dt > \frac{2\alpha+1}{3} + \frac{2}{3} \cdot \frac{1-\alpha}{3+2a}, \quad z \in E, \quad (2.13)$$

is true for $f \in A$, $\alpha < 1$ and $a > -1$.

THEOREM 2. Let $f \in S^*(\alpha)$, $0 \leq \alpha < 1$, and let $a > \max\{-1, -2\alpha\}$, then we have that

$$\operatorname{Re} \frac{z^a f(z)}{\int_0^z t^{a-1} f(t) dt} > \frac{2a+2\alpha-1+\sqrt{(2a+2\alpha-1)^2+8(a+1)}}{4}, \quad z \in E. \quad (2.14)$$

PROOF. The inequality (2.14) is equivalent to the inequality

$$\operatorname{Re} \frac{z^a f(z)}{\int_0^z t^{a-1} f(t) dt} > \frac{2\alpha + 2\beta - 1 + \sqrt{(2\alpha + 2\beta - 1)^2 + 8(\alpha + \beta)}}{4(\alpha + \beta)}, \quad z \in E. \quad (2.14')$$

Let's put

$$\frac{z^a f(z)}{\int_0^z t^{a-1} f(t) dt} = \beta + (1-\beta)p(z), \quad (2.15)$$

where β is the number on the right side of the inequality (2.14'). It is easy to show that $0 < \beta < 1$, $p(z)$ is regular in E (moreover, it can be shown that the function $\frac{a+1}{z^a} \int_0^z t^{a-1} f(t) dt \in S^*(\alpha)$ if $f \in S^*(\alpha)$, $0 \leq \alpha < 1$, $a > -1$. Hence, the function $p(z)$ may have the removable singularity in $z=0$ and $p(0) = 1$. From (2.15) after logarithmic differentiation we may get

$$\frac{zf'(z)}{f(z)} - \alpha = (a+1)\beta - a - \alpha + (a+1)(1-\beta)p(z) + (1-\beta) \frac{zp'(z)}{\beta + (1-\beta)p(z)},$$

and since $\operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha$, $z \in E$, then

$$\operatorname{Re} \{ (a+1)\beta - a - \alpha + (a+1)(1-\beta)p(z) + (1-\beta) \frac{zp'(z)}{\beta + (1-\beta)p(z)} \} > 0, \quad z \in E. \quad (2.16)$$

In this case we consider the function

$$\phi(u, v) = (a+1)\beta - a - \alpha + (a+1)(1-\beta)u + (1-\beta) \frac{v}{\beta + (1-\beta)u} \quad (2.17)$$

The function $\phi : D \rightarrow C$, where $D = (\mathbb{C} \setminus \{-\frac{\beta}{1-\beta}\}) \times C$ and ϕ is continuous in D . We have also that $(1, 0) \in D$, $\operatorname{Re} \phi(1, 0) = 1 - \alpha > 0$, while for all $(u_2, v_1) \in D$ so that $v_1 \leq -(1/2)(1+u_2^2)$ we get

$$\begin{aligned} \operatorname{Re} \phi(u_2, v_1) &= (a+1)\beta - a - \alpha + (1-\beta)\beta \frac{v_1}{\beta^2 + (1-\beta)^2 u_2^2} \\ &\leq (a+1)\beta - a - \alpha + (1-\beta)\beta \frac{-(1/2)(1+u_2^2)}{\beta^2 + (1-\beta)^2 u_2^2} \\ &= -\frac{1}{\beta^2 + (1-\beta)^2 u_2^2} [1 + 2(a+\alpha) - 2(a+1)\beta] u_2^2 \end{aligned}$$

(we used the fact that β is the solution of the equation $2(a+1)\beta^2 - (2a+2\alpha-1)\beta - 1 = 0$). To prove that $\operatorname{Re} \phi(u_2, v_1) \leq 0$ we must show that $1 + 2(a+\alpha) - 2(a+1)\beta \leq 0$, what is not difficult regarding the values for α, α and β . Therefore, from Theorem A and (2.16) we have that $\operatorname{Re} \phi(z) > 0$, $z \in E$, which is equivalent to (2.14'), i.e. (2.14).

COROLLARY 4. If $f \in K(\alpha)$, $0 \leq \alpha < 1$, what is equivalent to $zf'(z) \in S^*(\alpha)$, then from (2.14) for $a=0$ we have that

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \frac{2\alpha - 1 + \sqrt{(2\alpha - 1)^2 + 8}}{4}, \quad z \in E. \quad (2.18)$$

This is the former result given by Jack [6].

COROLLARY 5. If $f \in K$ then $\operatorname{Re} \frac{zf'(z)}{f(z)} > \frac{1}{2}$, [2], (which also implies from (2.18) for $\alpha=0$) and because of that, from Theorem 2 we have

$$\operatorname{Re} \frac{\frac{zf'(z)}{f(z)}}{\frac{z}{\int_0^z t^{a-1} f(t) dt}} > \frac{a + \sqrt{a^2 + 2a + 2}}{2}, \quad z \in E, \quad (2.19)$$

which improves the former result of Bernardi [1], Th.7(B). Namely, the constant on the right side of (2.19) in [1] is $\frac{1+2a}{2}$, but

$$\frac{a + \sqrt{a^2 + 2a + 2}}{2} > \frac{1+2a}{2} \quad (\Leftrightarrow \sqrt{(a+1)^2 + 1} > a+1).$$

THEOREM 3. Let $f \in K(z)$, $0 \leq \alpha < 1$, and $a > \max\{-1, -2\alpha\}$, then we have

$$\operatorname{Re} \frac{\frac{zf'(z)}{f(z)}}{\frac{z}{\int_0^z t^{a-1} f(t) dt}} > \frac{2a+2\alpha-1+\sqrt{(2a+2\alpha-1)^2+8(a+1)}}{4}, \quad z \in E. \quad (2.20)$$

PROOF. If $f \in K(\alpha)$ then $zf'(z) \in S^*(\alpha)$, and by applying Theorem 2 to the function $zf'(z)$ and partial integration in corresponding integral we have the statement of Theorem 3.

COROLLARY 6. For $\alpha=0$, i.e. for $f \in K$, we have that

$$\operatorname{Re} \frac{\frac{zf'(z)}{f(z)}}{\frac{z}{\int_0^z t^{a-1} f(t) dt}} > \frac{2a-1+\sqrt{(2a-1)^2+8(a+1)}}{4}, \quad z \in E,$$

which also improves the result of Bernardi [1], Th.8(C).

REFERENCES

1. BERNARDI, S.D. Convex and starlike univalent functions, Trans. Amer. Math. Soc., Vol. 135(1969), 429-446.
2. POMMERENKE, C. Univalent functions, Vandenhoeck & Ruprecht, Göttingen (1975).
3. MILLER, S.S. Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc., 81(1)(1975), 79-81.
4. OBRADOVIĆ, M. Estimates of the real part of $f(z)/z$ for some classes of univalent functions, Mat. Vesnik 36(4)(1984), 226-270.
5. OBRADOVIĆ, M., OWA, S. On some results of convex functions of order α , Mat. Vesnik, to appear.
6. JACK, I.S. Functions starlike and convex of order α , J. London Math. Soc. 3(2)(1971), 469-474.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk