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0. INTRODUCTION.

Let f be in the class of meromorphic functions analytic at the origin, having
fixed number of codimension 1 polar sets over some polydisk domain in ®. we investi-
gate the modes of convergence of (u,v)-sequences of unisolvent rational approximants
(URA) to f and we divide them into two main types; those associated with "horizontal
rows" of (u,v)-sequences of URA (for which v is fixed and p is free to grow infinitely)
and those linked to the '"slanted rows' (for which p and v are related but both grow to
infinity) including 'diagonal rows' (cases where u = v). As will become clear from
definition 2.1, one requirement Hy 2 vy i=1,2,...,n creates a "Padé Table" of upper
triangular (p,v)-sequences. Some study of "horizontal row" of (u,v)-sequences have
been carried out by Karlsson and Wallin [3] using explanations expressed in terms of
homogeneous polynomials in EZ. Our investigation of the convergence behavior of the
"horizontal rows" of (u,v) sequences constructed from non-homogeneous polynomials,
show that the convergence to f is uniform on compact subsets of the domain of mero-
morphy except on the analytic set {z € ¢ 1/f = 0} or on the remaining limit polar

sets of (p,v)-sequences unattracted by f. These limit polar sets have measure zero.
We refer to this type of convergence for (u,v)-sequences of URA as the Montessus

type. The case of the "slanted rows'" of (u,v) sequences in t" has been studied by
Gonéar [2] using diagonal sequences constructed from homogeneous polynomials.
Although in one variable, it is known that for certain limited classes of functions
there can be locally uniform convergence for "almost diagonal rows" of (u,v)
sequences, it is generally recognized that most meaningful ways to handle convergence
of "slanted rows" of (u,v)-sequences is in measure or capacity. Here the measure

refers to mn—Lebesgue measure and capacity refers to any reasonably defined capacity
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in €% adaptable to this kind of problem. We call this type of convergence in
measure (capacity) for "horizontal rows" or '"slanted rows" of (u,v)-sequences, the
non-Montessus type.

Either type of convergence for (p,v) sequences gives rise to a certain rapidity
and over-convergence (see Walsh [9]). For the Montessus-type over-convergence means
the domain of convergence of the (u,v)-sequences of URA, includes in its interior the
domain of convergence of the local power series representative of f at the origin in
t”. TFor the non-Montessus-type, according to Gonéar [2] over-convergence in measure
(capacity) means that convergence in measure (capacity) in any finite domain implies
convergence in measure (capacity) in t” for f cm.

The paper is organized to reflect the Montessus-type convergence in 83 and the
non-Montessus-type in 54. In §1 we introduce the notations used in the paper and in
§2 we introduce the definition of the URA's and discuss the sense in which they are
unique.

The main theorems of the paper are theorems 3.1, 3.3, 3.4 and 4.1 (which examine
the different cases associated with the horizontal rows) and theorem 4.2 (which
examines a case of the slanted rows). There is also theorem 3.6 which is an applica-
tion of theorem 3.1. The theorem yields a result about global analytic behaviour of
f if all the horizontal rows of (u,v)-sequences are constrained in a certain way.
Some extension of this idea is discussed in Lutterodt [5]. Theorem 3.5 provides some
insight into the way in which nuv(z)'s over-converge in the case of Montessus-type

and theorem 4.4, that of the non-Montessus type.

1. NOTATION.

Let z: = (zl,...,zn) be an n-tuple in cn and z: = (zl,...,zn_l) € m“'l;
p: = (ul,...,pn) and v: = (vl,...,vn) be n-tuples in Bin with v € Nn_l . Let 0 >0
P . < < 3 < no_ e —t1i -
and Ao' {zj e T: lzj! o}, 1 j S n, then Ao A0 x x A0 n-times, is a poly

disk centered at origin. We denote by ET the following subset of n@', ET: = (X N
0Lrg1}, te N" where '< ' is a partial ordering in IN" given by

O AT <f>0<)\j<rj,l<j<n.

We adopt the following short notation as well
At +A
al)" . al n

A‘-)\ )\,dz=dz...dz

3z 1 n
azl ...azn“
Tl,...,Tn -
z ER . z )
ueE[ al,...,(xn=0 ae IND al,...,an=0 .

L n
Let @ be a domain in € such that 0 e Q, then 341(9) is the ring of all func-
tions holomorphic in Q and continuous on 5;3 );(Q) is the set of all functions
holomorphic at the origin, but meromorphic in Q with finite pole sets in Q. A poly-
. . n :
nomial P)(z) in € of multiple degnee or simply 'degnee’ at most A = (A ,...,\ ) can
be written as ! :
PA(Z) = I g 2"
YEE

where = L .
gY g ey and z zy ...z
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Let jileu be the class of rational functions of the form va(z) = P“(z)/Qv(z)
where Q (0) # 0 and P“(z), Qv(z) are polynomials of 'degree' at most i and v respect-
v
ively; moreover (P (z), Q (z)) =1 on A:, except on a subvariety of codimension 22
) " v

for some p > 0 and for all (u,v).

2. RATIONAL APPROXIMANTS.

. : n
Let U be an open neighborhood of the origin in T .

DEFINITION 2.1: Suppose f ¢ §€& (U) with £(0) # 0, a rational function
R (z) eé§3 is said to be a tational apprcximant to f at z = 0 if
' 'Y
A
|

I
Q£ - P (2] =0 (2.1)
dz z=0

for » « Y Bin, an index interpolation set with the following properties:

(i) 0« E”
Gi) Ve BV =y e B, 0y A

(1i1) E < "V
(iv) Each projected variable has the Padé indexing set.

(v) For each pair (u,v), v= U
n

(v. + 1) - 1 where |Euv| is the cardinality of
; j

n
iy |E™V] <nm o(u,+ 1)+ 0
j=1 J j=

1

\
V.

REMARK 1. Padé index set is the index set that is used in the one variable case

to define Padé Approximants.

REMARK 2. If the function f used in definition 2.1 is such that £(0) = 0, then
depending on the order of regularity and in which variable, zj say, Weierstrass
Preparation Theorem can be employed to write f = W « g where W is a Weierstrass
polynomial w(ﬁ,zj) with W(0) = 0 and g is a unit with g(0) # 0. Definition 2.1 may
then apply to g in £ = W - g.

The rational approximants defined above are not in general unique. The question
of uniqueness is firmly tied to the cardinality of Euv employed. Uniqueness as known
in Padé case seems only possible if E"Y 1is maximal in the following sense.

DEFINITION 2.2. The interpolation set E" is said to be maximal if
"] > jgl(uj +1) + jEl(vj +1) - 1.

It should be pointed out that there are many maximal EPV that can be chosen for
defining unique approximants. This is a feature peculiar to several variables,
unknown in the Padé case in one variable. We note that when Euv is maximal, there is

v . . .
a one-to-one correspondence between "’ and its "Padé table" equivalent.

PROPOSITION 2.1. Let the pair <Pu(z), Qv(z)> define a (u,v)-rational approximant
to f ¢ 3 (U) w.r.t. maximal "V, Suppose <P:(z), Qc(z) is another pair that
satisfies definition 2.1 w.r.t. the same Epv. Then

*
Pp(Z) ) Pu(Z)
Q,(z) ~ Qx(2)
PROOF: Since f ¢ ¢¥ (U) and Pu, Q, are polynomials Qvf - Pu « 3 (U) and has a

Taylor development in U. Now by definition 2.1 and with E“\J maximal we get

\Y
w.r.t. EP .
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Q,(2)f(z) - Pu(z) = 1 (2.2)
AeINTA\E

where g,,) are the coefficients of the expansion. Similarly from the pair <P:,Qt> we

pvguv)\z

again have

A

* - = *
Qv(z)f(z) Pt(z) )\zmn\g“vg“\’)‘z . (2.3)

Multiplying (2.2) by Qt(z) and (2.3) by Qv(z) and subtracting the former from the

latter we get
A
Q, (2)P*(z) - Q*(2)P (z) = 7 r .z
, A
v u v u A’mn\Em)uv

(2.4)

where Lo is the coefficient of the expansion after taking the desired difference.
Now the R.H.S. of (2.4) is a power series regular with at least order p. + 1 in each
zj—variable. Therefore the L.H.S. of (2.4) must vanish w.r.t. the maximal E"" chosen,
since the L.H.S. is a polynomial of 'degree' at most u + v. Thus we obtain

Qv(z)Pﬁ(z) = Qt(z)Pu(z) w.r.t. E"V. (2.5)

Recalling that maximal Euv by construction, has maximal Padé indexing in each variable

and thus on projecting (2.5) on zn-axis, the uniqueness of Padé approximants then

yields
Pu(g,zn) . Pﬁ(g,zn) 2.6)
QV(Q,zn) Q{;(Q,zn)

where Qv(g,zn), Qt(g,zn) do not vanish in some neighborhood UO < U since QV(Q,O) #0

and Qt(Q,O) # 0. (2.6) holds not only for z = 0 but also for each fixed z € Cn_l n u.

The desired result then follows w.r.t. E“v.

From equation (2.1), we separate out the following linear equations:

1]

9

o Q,(2)£(2) - P ()], =05 X e E (2.1a)
AR wy

- @ @)£@N], =05 A e E\E, (2.1b)

whose solutions for coefficients of Qv(z) and then those of Pu(z) give rise to a
(u,v) rational approximant. Now (u,Vv)-sequences of rational approximants will be
called undisofvent if the underlying E"V is maximal and a certain determinatal or rank
condition is satisfied for the system of linear equations that arises from (2.1b).
(see also Lutterodt ([4].).

For the rest of this paper we shall assume that we have (u,v)-sequences of uni-
solvent rational approximants (URA). The latter is denoted by nuv(z) = va<z)/va(z)
with respect to some chosen Euv maximal. We then normalize qu(z), dividing Puv(z)
and qu(z) in nuv(z) by the modulus of the largest coefficient of va(z). This opera-
tion leaves nuv(z) unchanged but since Puv(z)’ qu(z) change we adopt the following

denotation of "uv(z) with qu(z) normalized,
ny(2) = B (@)1, (2) 2.7)

3. MONTESSUS-TYPE CONVERGENCE.
This section gives the generalized Montessus de Ballore theorem, some related
theorems covering the Montessus-type convergence and an application of Montessus

theorem to the generalized Padé Table.



CONVERGENCE OF (u,v)~SEQUENCES 645

THEOREM 3.1 (MONTESSUS). Let p > 0 and v = (v seeesV ) be fixed. Suppose

f o Y™ with finite polar set defined by G,: = {z e " q,(z) = 0} and
q, f e C(A ) where q, (z) is a polynomial of exact minimal degree v and A n G # o.

Suppose ", (z) is an (u,v)-unisolvent rational approximant to f(z) with 1ts polar set

(0) satlsfylng for v sufficiently large, Q (0) n A # ¢. Then as
u' = min (p,) » =
1$§<n J
. n -1 n
A n
(i) o qu(O) > Ap "G,

(ii) "uv(z) > £(2) uniformly on compact subsets of Ag\Gv.

REMARK: The degree of convergence in (ii) of theorem 3.1 is geometric and it

depends ' o= i ' Q
P on lg;gn(u,). The 'degree' of qu(z) in "uv(z) has to be exactly v.
The following lemma is used in the proof of the theorem.
LEMMA 3.2. For 0 < p' < p and u' = min (u,)
15<a
NNAE 2
IR X!
a2 -0
n p p'\n
XeIN \E 1-=
eIN'\ " ( o )

The proofs of Theorem 3.1 and Lemma 3.2 were given in Lutterodt [6]; that of Lemma
3.2 being in the appendix.

The following two theorems are closely related to theorem 3.1 not only in state-
ment but also in proof. We shall therefore state them together and then briefly in-

dicate where in their proofs they differ from theorem 3.1. (see, [6]).

THEOREM 3.3. Let w = (wl,...,wn) and p > 0 be fixed. Suppose f ¢ J¥T (A )) with
a finite polar set defined by G :={zc q, (z) = 0} and q, fe C(A ) where q, (z) is
a polynomial of minimal 'degree' w in € and G n A # 0.

Suppose nuv(z) is a (¥,v)-unisolvent ratlonal approximant to f(z) with v fixed
but v w and Q-l(O) is the polar set of = v(z). Then as p' » «

(i) (0) tends to a subset of A n G

(ii) ﬂ (z) + f£(z) uniformly on compact subsets of A \G .

THEOREM 3.4. Suppose the hypothesis of theorem 3.3 is satisfied with w=f v.

Then as p' » «

(i) Z n Q (0) tends to a set containing A n G as a proper subset.

(ii) n (z) + f(z) uniformly on compact subsets of A except on G u Zq of ¢"-
Lebesgue measure zero where Zq contains the remaining limiting polar set of LI

REMARK ON THE PROOFS OF THE THEOREMS 3.3 & 3.4.

The proofs of the two theorems 3.3 and 3.4 as already indicated are essentially
the same as that of theorem 3.1 in our paper [6] except for minor changes in the
second half of their (i)-parts. For theorem 3.4 we show further that the set Gw u Zq,
the exceptional set has En-Lebesgue measure zero.

The proofs, for second half of the (i)-parts for theorems 3.3 and 3.4, which

determine the relations between G n A" and Q_l(O) n &% = lim Q-I(O) n An, focus on
w o] \% P Lo uv [}
their corresponding versions of equation (3.8) in our paper [6]. 1i.e.

Q,(2)q,(2)f(z) = q (2)P(z). (3.1)



646 C.H. LUTTERODT

Dealing with theorem 3.3 first, we find that a ¢ Ag n Q (0) implies Q (a) = 0 so
that R.H.S. of (3.1) must give qw(a)?(a) = 0. Since (P(z), Qv(z)) =1 for z ¢ Ap
(except for some subvariety of codim 2 2), we must have that qw(a) = 0. Here v=x w
and hence as u' > «

-1 n -1 n n
QW(C) n Ap > Qv ) n Ao c Gw n Ao' (3.2)

The validity of equation (3.1) remains in tact on passing from subsequences to the

full sequence as discussed in the proof of theorem 3.1. Thus the polar set of "uv(z)

in AZ gets completely attracted by the polar set of f(z) with similar multiplicity on
n

L,
’ In the case of theorem 3.4, the equation (3.1) yields the following: Suppose
a € G n A , then q, (a) = 0. But since q, (z)£(z) # 0, except on a sub-variety of co-
dlmen51on > 2 therefore Qv(a) = 0. With a)ggv we must have as p' + ©
Qo) 0 a2 > CH) 0 A 56 0 AP (3.3)
BV p p w P
This remains true on passing to the full sequence from subsequences as done in
the proof of theorem 3.1 of [6]. Next we proceed to the final part of theorem 3.4
which begins with a modified version of the inequality (3.7) from our paper [6]. The

inequality in question is

A
Z
£ - my @1 < Iou\,<z)| To @1 ¢ Aemn\,,_u IA"'

Let K be any compact subset of Ap’ and choose p' > 0 such that 0 < p' < p implies

AD, S Ap and K ¢ Ap" Then using Lemma 3.2 we can tighten the above inequality to
get Vz € K (p_)u+1

1
lE@) - m (@] < “To, @@ (3.4)

Now if we let d = (dl""’dn) (v + wl,...,vn + wn) and define Fd(z) = Qv(z)qm(z),

n -1 n n
then the zero set of Fd(z) in Ap, Qv 0) n A" 2 (Gw u Zq) n Ap from (3.3). We claim
that Q;l(O) n A; is a set of Ikzn-Lebesgue measure zero. This consequently will
imply that (Gm u Zq) n Ag is of IR2n—Lebesgue measure zero. To prove the result we
first note that ch(o) n An must have empty interior. For if not then since A: is

connected, Q (z) 20 on A which we know is not the case. So An\Qsl(O) must be dense
in Ap Therefore we can choose a countable sequence {C } c A \Q_l(O) with corre-

[
sponding polydisks Um < Ag, m=1,2,... centered at Cm where {Um}m forms a covering

of Ag and each Um n Q;l(O) # ¢, m = 1,2,... Invoking Jensen's inequality we have
fU logle(z)ldu > - (3.5)
m

where dU is a IRzn—Lebesgue volume measure for Um. The inequality (3.5) tells us
that the set on which Fd vanishes in Um cannot have a positive measure, i.e. it must
have measure zero. Since there is a countable number of Um that cover Ag, the claim
is proved and hence the desired result.

Now for z € K\(Gw U Z) and H' sufficiently large we can find § > 0 such that
lﬁuv(z)| > § and Iqw(z)| > §. Thus on passing to sup-norm in (3.3) we can find

c, = 02(5,01) > 0 such that
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- 0"y u'+l p'
He@ -, @I <c, &)Y, 0« Be G.6)
From (3.6) the desired result on degree of convergence follows, showing the uniform
convergence.
The next theorem compares the rate of convergence of (4,V) sequences of URA
(z) to f € ]?7(A ) where v is fixed, with the rate of convergence of the Taylor

J\J

polynomials n (z) to f. The following definition shows that 'degree' of “pV is the

same as that of o
uo
: . Al Al
DEFINITION 3.1. A rational runction Ruv sexn?ls said to have 'degree
u* = (ui,...,uz) if in each zj-variable, UV(Z) expressed as a quotient of two pseudo-

polynomials in zj has degree given by u; = max (uj,vj).

COROLLARY 3.la. The 'degree' of (u,v) - URA in this paper is always p. This
follows from property (v) of Euv in definition 2.1 where each pair satisfies v« u,
making the '"Padé Table'" upper-triangular.

THEOREM 3.5. Suppose the hypothesis of theorem 3.1 is satisfied. Let K be any
compact subset of An\Cv then in terms of sup-norm on K, for sufficiently large p' we
get

- RS -
| 1£(2) ﬂuv(Z)llK [1£(2) "uo(z)l'K

where ﬂuo(z) is the Taylor polynomial of 'degree' u to f at the origin.

PROOF. 1°. Let 0 < r < p and let U = An (so that An < An) be a neighborhood of
the origin such that f € ae,(U) and let the n (z) be the partlal sum of f(z) of
'degree' y in U where U c V, V n G =¢; V be1ng open and connected in A and U being

the closure of U. Let
va(z) = qu(z)"uo(z) - P“V(Z)-

Then Fuv(z) € C(U) and Fuv(z) € .QC(U) and therefore by Cauchy's Integral formula

F _(t)
L f - HY de ...dt

j=1
where 30U is the distinguished boundary of U. Using arguments similar to those

employed in the proof of theorem 3.1 of our paper [6] we can write

A
F = I f
uv(Z) AEE ‘ HvA
PV
where
1 fFuv(t)
f = dt_...dt
HVA 2ﬂ1) A+l 1 n
we claim that
A
F = I f 3.6
w® G e (-0
u+v
Q. (&) m (t)
where f s 1 5 A X+1U0 dtl...dtn. (3.6b)
" (2mi) aou t
In order to bst i i 3 :
substantiate this claim, we write f(z) = uo(z) + g (z), where ﬂpo is the

partial sum of f(z) and g (z) is the remainder of the power serles expansion of f in

U. Thi
is makes the functlon gu(z) analytic but regular in each variable z. with order
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“j + 1. Now observe from equations (2.la) and (2.1b) that

HIA 1]

? .2 . .

. R, o) - Puv(z)]'FO i (Q“.)(z)gp(z))lﬁo, MR (3.7a)
and

o oM .

o @, @ ™), = - " @, (@), (@) |, g7 } e B LNE. (3.7b)

However, the regularity conditions on gU(z) in each variable imply that

I
3—X~ g“(z),z=0 =0, Ve EU and hence invoking Leibnitz rule in the R.H.S. of (3.7a)
Hz
we get the R.H.S. to vanish, yielding the claim.

We remark that even though for XA - EU+V\EU equation (3.7b) provides an alterna-
tive formula for (3.6b): there is no real advantage gained in adopting the second

A o \E .

form for € Eu+v L“

Recall that Ql (t) is a normalized polynomial of fixed multiple 'degree' V, thus

1
it is uniformly bounded on U. We then let MQ = max |6“V(t)l, independent of M.
te’ U
0

'wo(t)’ being the partial sum of an absolute convergent development of f on ¢ U, must

0
satisfy |"“0(t)| SM,Vte 30U since V n G, = P and U -~ V. Here M is independent ji.

Thus from (3.6a) we get using Cauchy inequality on f“vx that

A
< o z
]F‘N(z)l < MMQ >\/IE . JTX-}'
- p+v

r
Mo

zZ 4. (3.8)

(z)] <M T

5
Q 2 \Eu r n
The R.H.S. of (3.8) is the tail of a geometric series in IR and clearly as p' > ™,

Thus 'va

R.H.S. of (3.8) tends to zero. Thus given ¢, > 0,3 NE such that

L
pto> Ne > IFuv(z)I < Ll for z € U. This result holds cverywhere in the complete
1
Reinhardt domain of convergence of f(z) denoted by UR where V © UR (S A? and
+

u, n Gv = 6. Thus on any compact subset K

- 5 '
R S UR’ we must have for u NK

0 1

l'qu(Z)"uo(z) - Puv(z)llKO <R

2°. Now since KO < Ugp and URnn Gv = Q,nﬂ 60 > 0 such that lqv(z)l > 60 for all
z € KO. By Theorem 3.1 Q;%(O) n AO > Gv n A, as p' » ©., Thus for pu' sufficiently

large, we get by way of Hurwitz theorem in t" that |Q“v(z)| > 60 for all z ¢ KO and

furthermore
‘1
Hm o2 = m @], <7 =c.
10 uv KO GO

Using triangular inequality for sup-norms on K_, we get

0
l£G) - ﬂpv(z)|;Ko <)) - nu0<z)l|K0 + | @) - nuv(z)l|K0

and for p' > NE , we obtain
1

JHOREMONIME e =@l +e
since ¢ > 0 is arbitrary, we get on KO

I1£¢2) - "uv(Z)llko <||f(2) - “uo(2>l|x0' (3.9)
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This inequality is not violated if KO is extended to any compact subset K where

K0 ‘ ER c K« A?\GU. Theorem 3.1 guarantees the L.H.S. of (3.9) to remain as small as

possible on K An\GV whereas R.H.S. of (3.9) cannot be made arbitrarily small in

An\ﬁR for sufficiently large pu'. Thus p' > NL implies
i
- < - .
[E(2) n“\)(z)HK |1£¢z) uuo(z)]IK

THEOREM 3.6. Suppose f(z) is analytic at the origin and is at most meromorphic
with a finite polar set in c”. Suppose for each fixed v = (vl,...,wn), the polar set
of each (;1,v) unisolvent rational approximant n“v(z) to f(z) tends to infinity as
" > « . Then f(z) must be entire in C .

We need the following lemma in order to prove the above thecorem.

LEMMA 3.7. Let v = (vl,...,vn) be fixed. The polar set Q;i(o) of "uv(z) tends
to infinity as p' » @ if and only if given any p > 0 and a polydisk Ag

-1

n
QU (@) 0 AT = (3.10)

for p' sufficiently large.

PROOF. For fixed VvV, suppose the polar set Q;i(O) tends to infinity as p' > =,

. . n
Then it is immediate that for any given p > 1 and a polydisk Ap, kil Np such that
o . Mgt =
noz Np . ! Q“U(O) b
To prove the converse, we assume its opposite, i.e. we can choose o > 1 for

which p' > N we have
n
n -1
hy 0Q,00) # 9.
0
Al

Now on A:O, {Q“v(z)}“ is a normalized sequence of polynomials with fixed 'degree

v and therefore we can choose a subsequence {QUK\)(Z)}K for which Qurv(z) » Qv(z) as

¥ > o uniformly on a compact subset Kl c A; so that

0

n ~1

A nQ T (0) # ¢,

o qu
However, fix kK and suppose {am}m is a sequence of points in Q;lv(o) for which

K

lim a =af Kl. Then 6” V(am) = 0 for all m and therefore by continuity we get
m>© K

QV v(a) = 0. Now let kK » = QU v(a) > ﬁv(a) on Kl. Consequently Qv(a) = 0. Since
”

a € Kl « A" , it follows that
?o
n -1
Ap n Qv 0) # b.
0
Thus the converse holds and this concludes the proof.
The proof of theorem 3.6 was given in Lutterodt [4], so we merely provide an

outline for the present paper: Suppose f is analytic at the origin and meromorphic
. n . .
in T with at most a finite polar set. By theorems 3.1 or 3.4, the polar set of f(z)
attracts the whole polar set n“v(z) or a subset of it as the case may be. But for

: . . IJ\)
infinity as u' > ». Thus the polar set of f must be drawn to infinity, making f

. . n
entire in T .

each fixed v we know by hypothesis that the polar set of nuv(z), Q_l(O), tends to
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4. NON-MONTESSUS TYPE CONVERGENCE.

In this section, we consider convergence of (u,V)-sequences of unisolvent
rational approximants with V not necessarily fixed as in §3. The convergence is
weakly expressed in terms of measure for the cases examined, using a lemma of Bishoé

[1]. 1t should be noted that v = (v ,Vn) is replaced by v = (v,...,v) where in

IEREE
the latter v is no longer an n-tuple but a mere natural number. Similarly

®w = (w,...,0) with @ € IN but y remains an n-tuple.
THEOREM 4.1. Let € > 0 and 0 < 1 < 1, and let w, v € IN be fixed. Suppose

f e ZJZ(AS) and its finite polar set over Ag is G i = {z e C™: qm(z) = 0} and

q”f ¢ C(KS) where qw(z) is a polynomial of minimal ‘degree’ w = (@,...,w). Suppose

| = (ul,...,un) and‘g = (V,...,V) are such that 0 < w € v < p' = min (uj).
1<j<n
Suppose It )(z) is a (y,v)-unisolvent rational approximant of f. Then for any
compact subset k' A:, dc - 0, 0 < 8§ <1 and ”0 ¢ IN, positive such that u' > pé >
et

[£(z) - ﬂu\i(z)l

N )
for all z ¢ K\Zﬁv where Z:v = {z ¢ K: |qu(z)qw(z)| < "%} and

m[{z ¢ K: |f(z) - nuyfz)ll/u' Z2e}] < ¢

where m is En—Lebesgue measure.
The differcnce between the above theorem 4.1 and the next one theorem 4.2 lies

in vV not being fixed in Theorem 4.2.

THEOREM 4.2. Suppose the hypothesis of theorem 4.1 is satisfied, except for
v = (V,...,v) is not fixed, with 0 < @ < v < min (u,) =p', v =v({') > @ as
p' » ® but v = o(p'). I<j<n
Suppose n (z) is a (4,v)-unisolvent rational approximant to f(z). Then for any

K ¢ Ag, compact, ¢ > 0, 0 < 8§ <1 and u such that p' > uo

0

U'
|£(z) - 1lu2(z)| <8

Y by . n
for all z ¢ K\Zn where m(Zn—O < € and m is a € -Lebesgue measure.

LEMMA 4.3 (Biihop). Let Fg(z) be a normalized polynomial of degree
= (d,...,d) in@C . Let p> 0 and O < n < 1 be given.
c = c(n,p) such that the set

|

Then there exists a constant

= A0 . d
Zn ={z¢ AO: Ibg(z)l <n}

n
has € -Lebesgue measure satisfying

nz) < en?/®,

REMARK. The proof of this Lemma uses an induction argument and it is presented

in Narasimhan [8].

PROOF OF THE THEOREM. 1°. f(z) € TYZ(A ) has a polar set G, =1{ze¢ "
q, (z) = 0}. Without loss of generality we assume that q, (z) is normalized in the

same was as qu(z) Since P (z) and Q (z) are both polynomlals in ¢" and

qu € jQXA ) and therefore q Q f quuv € dC(A ). Following the same presenta-

tion given 1n the first part of the proof of theorem 3.1 of our paper [6], we extract
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the inequality (3.7) and transplant it to this paper as

A
H (2)] < M( > 1?—%0
W \E ¢} A

where M is as before. From the above 1nequallty we get,

A
M 2

[f(z) - 7 ()] <T—————ﬁ- (2 JT+) (4.1)
uv Q“Z(Z) q,(2)] N pn \E, o A

Let K be any compact subset of A: and let p' > 0 be chosen so that 0 ~ p' < p >

f:, T A: and K < ﬂ?,. Then appealing to Lemma 3.2 for z € K, (4.1) becomes
Mr 1'+1
It -1 @] < s & “.2)

T, @) qm(z>T 0

where v (i/,n) is a constant depending on o and n.

2°. CGiven 0 <n<l,letd=v+w=(+wn,...,v+w) and Fd(z) = qu(z)qm(z).

Let ny-= fz ¢ K: IFd(z)] < nd) with d = n + . The polynomial Fd(z) of degree

(d,...,d) is normalized in En. Thus by Lemma 4.3, we must have the Gn—Lebesgue

measure satisfying

2/n

m(Zzy) < en 4.3)

)
R.H.S. being independent of the degree of Fd For any z € K\Zﬁ—~we must therefore

have |P (z)] 2 d - 0, so that

Mc(p,n) p'\n'+l
- < —=H ol (B .
l£@) - m, (@] e G (4.4)
1
Since 0 < f‘ <1 and p' » », we can find § ¢ (0,1) and ué such that p' > p6-+
)
HOEES (z)l < s (4.5)
for z € K\Z“v However, for € - 0 and cn 2/n < g£; the set
N 1
o224y K: [£(z) - n (z)]llu 2 ¢} is included in the set 2™ and

Hyv.
consequently from (4.3).

n(Qgi) < €.

The proof of Theorem 4.2 is identical to that of Theorem 4.1. But one has to
recognize that even though v > » as py' » ®», because vV = o(p'), this does not pre-
clude us finding 6 € (0,1) for which the inequality (4.5) holds.

The Theorem 4.2 and some generalization for the case of meromorphic maps has
been discussed in Lutterodt [7].

The next theorem establishes over-convergence for the non-Montessus type.

THEOREM 4.4 (Goncar). Let p > 1 be fixed and let f € J,I(D) where D is a domain
in €" such that A < D. Suppose the conditions of either Theorem 4.1 or Theorem 4.2
are satlsfled and for any K ¢ A compact ﬂ (z) Ly f(z) on K as U' > ®and v = o(u').

Then u (z) kS f(z) on any JCcompact in D as p' »> .

REMARK. The statement n (z) f(z) as i' » » means that n”v(z) converges to

f(z) in € —Iebesgue measure m as p'o oo,
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PROOF OF THEOREM 4.4. We shall assume without loss of generality that 0 € )
The pole set Gq of £ in D c €" has En—Lebesgue measure zero (cf. final part of
9
Theorem 3.4 praof); since D is an open connected set, (D > XK) so D\Cm must be dense

in D. Thus we can select distinct countable points 0 = a in D\Gm and poly-
@

58,500
disk neighborhoods A" centered at aj such that 'U1 A:‘ JllC.Z Since X is compact, we
choose overlapping polydisks A:, A?j ,...,AFi whg;e reipective centers 0, ajl,...,aj
are linked by a polygonal path which]does n&f intersect the codimension 1 polar set

GEAOf f such that JCc QEO Az.'. The polygonal path then becomes a path along which f
can be analytically co;tinueékin D. Here we have identified A; with AS‘ so that

o

K

from theorem 4.1, for p' sufficiently large we must have, for € > 0.

miz € ¥ n AZ: |£(2) - “UX(Z)|1/U’ e} < e (4.6)

For each of the overlapping polydisk neighborhoods Ag ,...,Ag a result identical
< I I
to (4.6) in fact holds. Since X=Xn u A0 we obtain the following: for p'
2=0 'j
sufficiently large
Al
nlz e X: |f(2) - ﬂw(z)lllu > e} < ke

which gives the desired result.
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