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ABSTRACT: If T is the parallel map associated with a l-dimensional tessellation automaton,

then we say a configuration f is a weak Garden of Eden for T if f has no pre-image under

T other than a shift of itself. Let WG(T) = the set of weak Gardens of Eden for T and
G(T) = the set of Gardens of Eden (i.e., the set of configurations not in the range of
T). Typically members of WG(T) - G(T) satisfy an equation of the form Tf = s™f where S"
is the shift defined by (S"f)(j) = f£(j+m). Subject to a mild restriction on m, the
equation Tf = s"f always has a solution f, and all such solutions are periodic. We
present a few other properties of weak Gardens of Eden and a characterization of WG(T)
for a class of parallel maps we call (0, l)-characteristic transformations in the case

where there are at least three cell states.
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1. INTRODUCI'ON.
A Garden of Eden configuration for a tessellation automaton is one which has no
predecessor under application of the local transition function; it must be a "given'

configuration, hence the colorful name. By a weak Garden of Eden we mean a configuration

which has no predecessor other than perhaps some shift of itself. To simplify matters, we
will consider only l-dimensional tessellation automata. We illustrate here a technique
which can often be used to manufacture periodic weak Gardens of Eden for parallel maps.

We also present a few simple results: For example, one-to-one parallel maps always have

weak Gardens of Eden. Finally we consider (0, 1l)-characteristic parallel maps. A (0,1)-

characteristic parallel map is defined in the following way: Let t be its local transi-
tion function. There must be a given word a such that for all words b having the same

length as a we have

t(b)=\1 if b = a
0 otherwise
(We assume, of course, that O, 1, a, and b are made up of symbols from our set of states
for our tessellation automaton.) This set of characteristic parallel maps is ubiquitous
in the sense that all other parallel maps can be constructed from combinations of them.

We give a characterization of the Gardens of Eden of the (0,l)-characteristic parallel
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maps and then a characterization of those weak Gardens of Eden which are not Garden of

Eden for the same class of maps under the additional assumption that the cells of

the tessellation automata have at least thrce possible states.
2. PRELIMINARIES

Let A be a fixed, finite set which we think of as an alphabet or set of states or
"colors". We always assume 0 and 1 are members of A. By a (l-dimensional) configuration
we mean a function f: Z ~ A where Z is the set of integers. Let C be the set of all
configurations. By a string we mean a function f : J + A where J is an interval in Z.
IfJ=[j+1, j+ml=1j+1, j+2, ..., j+m}, then wve say the string has length
m; we do not in general demand that strings have finite length. 1If g is a configuration,
then the restriction of g to an interval in Z is called a string in g.

Note that we use the term string in a way which is not quite standard. Usually
"string" is taken to be synonomous with "word", and by a word over A one means a finite
sequence of elements of A. The differences between the two concepts are that strings
may have infinite lengths and that one specifies where a string is in Z (i.e., one gives
an interval in Z as its domain). We say more about this in section 4.

By a local map or local transition function we mean a function of the form

t : A" » A where A" is the n-fold cartesian product of A with itself. We can then define
t:c" ¢ (note this is the same symbol t as in the last sentence but a different function)

in pointwise fashion:
(e (£, foseen £ D)) = €(£1(8)5 £500), 00 f (3))

where fl’ fz....,fn e Cand j e Z. If Map (C, C) = the set of functioms from C to C,

then we can define yet a third t, this time
t : Map (C, C) » Map (C,C)
by the standard pointwise extension technique:
(e(T, Ty - T DI(E) = (T (£), T,(£),...,T (£))

where Tl' TZ’ e Tn - Map (C, C) and f ¢ C.
EXAMPLE 1. Let A= {0, 1, ..., p - 1} and suppose we endow A with the algebraic
structure of 2/(p), the integers modulo p. Define t : AZ > A by t(x,y) = x + y. Then

for fl’ f2 e Cand T,, T, € Map (C, C) we would write t(fl,fz) = f1 + f2 and
+ T,.

t(Tl, TZ) = Tl 2
By a shift (or translation) Sp, where p € Z, we mean the function sP : ¢ » C defined
by (Sp(f))(j) = f(j + p) where f ¢ C and j ¢ Z. Now let W=1[j + 1, j+ nl, a finite

1’ "2

interval in Z. If t : A" > A is a local map, then the parallel map (or global map or
window-transformation or W-transformation) T with window W defined by t is the function
T : C o G defined by T = £(s3*0, s3%7 AL

EXAMPLE 2. Using t and A from Example 1 and setting W = {2,3}, we obtain

“eey

T = t(s?,83) = 52 + 53, Then for f ¢ C and i ¢ Z we have (T£)(i) = £(i + 2 )+ £(i + 3).
NOTE. TIn this example we wrote Tf instead of T(f), and we will continue this con-
vention throughout this paper.
For T a parallel map we say a configuration f is a Garden of Eden provided it is
not in the range of T. Information about Gardens of Eden can be found in [1] , [21,

[34, 041, [ 51, and [ 6 J. We say f is a weak Garden of Eden of T provided that whenever
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Tg = £, then g must be of the form sXf for some k. Let G(T) = the set of Gardens of Eden
ot T and WG(T) = the set of weak Gardens of Eden. We see that G(T) < WG(T).

3. ELEMENTARY PROPERTIES OF WEAK GARDENS OF EDEN
PROPOSITION 1. If f is a weak Garden of Eden, but not a Garden of Eden for the
parallel maps T, the Tf = SLf for some integer £ .

PROOF. Since f must be in the range of T, we can find g such that Tg = f. But

g = Skf for some integer k. As parallel maps commute with shifts, we have Tf = S-kf a.

Suppose the parallel map T is defined by T = t(Sj+1, . SJ+n) where t 1s a local

map. We say t is permutive in the ith variable (or hyperactive in the ith variable)

provided that whenever we chose a,, a ,a, b b,y ..., b from A with the pro-
1 2 n

FORRE a2 Pre
perties that ay z bi but a, = b, for k # i, then t(a an) 2 t(bl,bz,...bn).

k 3

We say T is permutive (or hyperactive) in the ith variable if and only if t is.

103270

1f J is an interval in Z and r an integer and f and g are functions from J and
J + r respectively into A, we say g is a copy of f provided that g(j + r) = £(j) for
every j ¢ J. (Note: J+r={j+r:jcd}.)

PROPOSITION 2. Let T be a parallel map with window W. For every integer f ¢ W,
the equation Tf = Spf has a solution f. Further, every solution is periodic.

PROOF . We may consider A to be {0,1,2,...,p~1} and endow it with the algebraic
structure of Z/(p). As pointed out before, this structure maybe lifted in a pointwise
fashion onto the configurations and then onto the set of maps of C into C. Then the
equation Tf = Slf maybe rewritten (T - Sy)f = 0 (the constant 0 configuration). Since
/ ¢ W, it follows that T - Sl is permutive in its first or last variable. The fact that
there is a solution follows from Theorem 6.6 of {7) and the periodicity of f from Theorem
9.1 of [7] and the periodicity of the constant 0 configuration. [

EXAMPLE 3. We illustrate how one may sometimes manufacture weak Gardens of Eden
by using the ideas in Propositions 1 and 2. Let A = {0,1} (which we identify with 2/(2))
and set T = S! * (1 + S%) (note that we are using both multiplication and addition mod 2).
Our window is W = [0,1]. Let us seek a weak Garden of Eden satisfying Tf = S3f. Such
an f must satisfy f£(j+3) = £(j+1) ° (1 + £(j)) for every integer j. We start with a
"seed'" string, for example 001, and use the recurrence relation on f to extend it inde-
finitely to the right. The result is 0010101010l... (The length of the "seed" one
starts with is readily determined from the length of W and the distance of ¢ from W;
the choice of the "seed" string is a matter of experimentation.) We see from this that
we might try the configuration f given by ... 01010101 .... 1It is easily checked that
the only pre-image of f under T is a shift of f one unit to the right or left.

EXAMPLE 4. For any shift Sk, we have

c(s¥) = 4 and we(s¥) = c.

EXAMPLE 5. If t : A~ A is a permutation of A and T = t(sk), then every f satisfying
Tf = Spf for . # k is a weak Garden of Eden. Such f's are easily manufactured by starting
with a "seed" string and appealing to t(f(j + k)) = £(j + ).

EXAMPLE 6. We give an example of a weak Garden of Eden which is not a Garden of
Eden and is not periodic. Let A = 0,1} and T = (1 + 5% - (1 +sh) - s? . (1 + s3d).
lLet f be a configuration containing an infinite number of 1's such that any two successive

1's are separated from one another by either two 0's or three O's and f is not periodic.
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A portion of f might well look like this

..1001000100100100100010001001 ....

Because (If)(j) = 1 only when f(j) = f(j+1) = £(j+3) = 0 and f(j+2) = 1, it is easily
checked that the only pre-image of f is S-zf. That means that Tf = S?f so that
2=+ ¢ W= [0, 3] and Pruposition 2 does not apply.

PROPOSITION 3. Every weak Garden of Eden has at most a single pre-image.

PROOF: Let f € WG(T) - G(T) and suppose Tg = Th = f. There must exist integers &
and m such that g = S f and h = S™. Then T(S £) = T(S™) = £ so that $™ £ = T(f) = §
Hence $™ 'f = f. Therefore h = S"f = (S’ o Sm-ﬁ)f = Sif =g. 0

EXAMPLE 7. Let A = {0,1,...,p-1} and treat it as z/(p). Set T = $! - 0. To say
that Tg = f is to say that g(j + 1) = g(j) = f(j) for every integer j. One can see from

Mg,

this that T is onto and that every f has exactly |A| pre-images where |A] = the cardinality
of A. Then by Proposition 3, WG(T) = .
We note also that information about parallel maps which are h-to-one can be found
in [7], 18], and L 9] and that if h 2 2, then WG(T) - G(T) = ¢.
PROPOSITION 4. Every onme-to-one parallel map has a weak Garden of Eden which is
not a Garden of Eden.
PROOF: Let T be a one-to-one parallel map, and let £ be an integer not in T's
window. Then Tf = Szf has a solution f. This means T(S-lf) = f. But f has a unique
pre-image, so it must be the desired configuration. [
PROPOSITION 5. If T and Q are parallel maps such that Q is one-to-one and we define
the parallel map R by R = Q-1 O T 0 Q, then Q(G(R)) = G(T) and Q(WG(R) - G(R)) = WG(T) - G(T).
PROOF. Note that by [10]we known Q.1 must be a parallel map, and hence so is R.
It is straightforward to show Q(G(R)) = G(T), so we consider only the second half of
the conclusion. Let f ¢ WG(T) - G(T). We need only show that Q_lf € WG(R) - G(R).
Clearly Q-lf ¢ G(R) since f ¢ G(T). Suppose g is a configuration such that Rg = Q-lf.
Then T(Qg) = f and thus Qg = Smf for some integer . Hence g = SQ(Q_lf). Therefore

WG(T) - G(T) < Q(WG(R) - G(R))

Sinve T - QO RO Q-l, containment in the other direction also holds. (]
PROPOSITION h. For any parallel maps TI’TZ""' Tn we have
o o
WG(TI) N oo N WG(Tn) c WG(T1 oo Tn).

PROOF. Let f € WG(TI) Neoo WG(Tn) and suppose (T1 0,..0 Tn)g = f. There is an

1 o Tn)(S_gl g) = f.
Clearly we can continue this process to produce an integer £ such that g = ste, ]

4. CHARACTERISTIC PARALLEL MAPS.

Let a and b be distinct elements of A and (al,az,...,an) a given ordered n-tuple

integer .. such that (T2 o ... 9%9T)g = Silf or, equivalently, (T2 o

in A". We call t : A" + A the (a,b)-characteristic local map for (ai,a%l...a") provided

t(bl,bz....bn) = b if (bl’bZ""’bn) = (al,az,...,an)
and

a otherwise .

We then call T an (a,b)-characteristic parallel map for (al,az,-..,dn) provided it is of

the form T = t(Sj+l, Si+2,...,Sj+n) for some integer j. We will consider only (0,1)-
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We note that all parallel maps can be built up from characteristic maps. Let
A=1{0, 1, ..., p-1} and let us treat it as the integers mod p. Let Sps Sps +ees Sy
be all the ordered n-tuples in An, and for each i let ti be the characteristic local
map for Si- Ift: A" > A is a local map and ¢; = t(si) for every i, then

t = cltl + ... +cNtN. Take a window W = [ j+1, j+n] in the integers and for each i let

. iy .
1} be the characteristic map ti(SJ+l, sJ 2,...SJ+n). If T is the parallel map defined
by t and having window W, then we can write T = ClTl + ... +cNTN.
In this section we give characterizations of G(T) and WG(T) - G(T) for T a character-
istic map. In the case of WG(T) - G(T) we assume A contains at least three elements.
Before beginning we need some terminology.
Recall that by a word over A we mean an ordered sequence (al,az,...am) of elements
of A, but we use the symbolism aja,...ay for it. 1If a = aja,.

two words over A, then we can concatenate them to produce a single word

cean and b = ble"'bn’

ab = alaz...amb]bz...bn. We assume the existence of an empty word z such that az = za = a
for every word a. 1If a = ajay...a. where the ai’s are elements of A, then the length of a
is Ia‘ =m. If a,b, and c are words such that a = bc, we say b is a left factor of a;

if ¢ is not the empty word, we say b is proper left factor of a. Right factors and

proper right factors are defined in a similar fashion. If c ¢ A, then c! = ¢ and

n+1
c = " where n = 1, 2,....

Clearly strings of finite length are almost the same thing as words. If we have a

string f : J > Awhere J =[j + 1, j +m] and f(j +i) = a, for i = 1,2,...,m, then we

i
say f is a copy of the word aja,,...a, and we even permit ourselves to write (abusing

notation slightly) f = aja,...a . If h is a configuration and J an interval in Z, then

»'od.
It is also useful to define what we mean by successive occurrences of symbols and
words in a configuration. Let f be a configuration. For an element b of A, we say that

distinct integers i and j mark successive occurrences of b in f provided f(i) = f(j) = b

and also provided that for all k strictly between i and j we have f(k) # b. If a is a

word over A, we say f contains successive occurrences of a at the intervals J and r+J,

where r > 0, provided that £|J and f|(r + J) are copies of a and provided that for every
s such that 0 < s < r we know fl(s + J) is not a copy of a.

DEFINITION. Let a be a word over A. We define a set of natural numbers 0(a) thus:
r ¢ 0(a) if and only if there exists a configuration f and an interval J such that f
contains successive occurrences of a at J and r + J.

EXAMPLE 8. Let A = {0, 1} and a = 1010l. We can have a configuration in which we
have "overlapping" occurrences of a like this,

10101
10101,

so that we must have 2 ¢ 0(a). If we try to set up successive "overlapping' occurrences
thus,

10101
10101,
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we see we have introduced a third occurrence of a in this fashion,

10101
10101
10101,

so that 4 ¢ 0(a). On the other hand, if we write 10101 -- ... - 10101, then we see
that by filling in the blanks with l's we introduce no third occurrence of a. Therefore
6, 7, 8, ... € 0(a). As a matter of fact 5 ¢ 0(a) since 1010110101 contains exactly
two occurrences of a. Hence 0(a) = {2} u [5, =).
LEMMA 2. Let A be a set containing O and 1, and let a be a given, nonempty word
over A. If there exists a natural number m such that a0™a contains a third occurrence
of a, then for every natural number , the word alna contains no third occurrence of a.
PROOF . Suppose there are natural numbers m and n such that a0"a and al™a each
contain a third copy of a. We will produce a contradiction.
Note first that the third copy of a must contain symbols from 0™ and 1" so that a
cannot be a constant word.
There are only certain ways the third occurrences of a could lie in a0™a and alna,
and consideration of these ways gives rise to cases.
Case 1. Suppose a = bOQ where b is a nonempty proper right factor of a and 1 < ¢ < m.
We have a = cb for some word c. If |b| < £, then a = cb = 6" implies b is a constant word
made up of 0's and hence so is a. This is impossible, so |b| > %. Again from a = cb = bo*
it follows that b = b 02 where bl is a proper right factor of b. Then we must have
a= cbIOL = b102l. Note also that |bll < |bl. As we argued above, we may show that

Ihll > % and hence that a = cb2072 = b2031 where b, is a proper right factor of b, and

’hz' > Y. Clearly we can construct an infinite sequence bl’b2‘b3”" such that bn+l is
a proper right factor of bn and Ibnl > lbn+l| > 9 for everyqn. Contradiction.

We also see from this proof that we cannot have a = bl where b is right factor of
aand 1 < % < n, nor can we have a = Olb or a = llb where b is a left factor of a and
1 < 2<morl < Y <n respectively.

Case 2. We must be able to write a = bOOmc0 = bllncl where bo and b1 are nonempty

proper right factors of a and L and ¢, are nonempty proper left factors of a. We may,
without loss of generality, suppose that |b0| < Ibl[.

We first show that for some natural number k we have a = (bOOm)kc where ¢ is a
left factor of bOOm. We know a = cod for some word d. Suppose we can construct a sequence

of words c'o, c! ..,c'. such that c' is a proper right factor of c'i for

1 .
i=0,1, ..., j-1 and a = (bOOm)J+lc’j =(b00m)jc'jd. (Certainly this is true for j = 0
with ¢’ Suppose |c'j| < |b00m|. From (bOOm)J+1c'j = (bOOm)Jc'jd we see that

P
J

0= co.)

c'j must be a left factor of bOOm. 1f we set c = ¢'

5 we see from a = (bOOm)

that we are done. Suppose on the other hand that Ic'jl > IbOOmI. From
m j+1 o, _ mJ [
(bOO ) c i< (bOO )'c jd we see that c j bO

factor of c'j, and we must have a = (bOOm)J+2c'

m . '
0c j+1° which makes ¢ j+1

= (b Om)j+lc‘ d. As the lengths of
1 0 j+1

a proper right

i+
the ci's are decreasing, we must ultimately be able to find one which we can use as c.
We know from the fact that a = (bOOm)kc = bllncl, where ¢ is a left factor of b Om,

k n
that we can write b, in the form by = el™f. Since |b0| < |b1| and (bOOm) c = bll Cys

0
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it follows there must be a j such that b1 = (bOOm)je = (bOOm)j_lbOOme = (bOOm)j_l e1"fo"e.
It follows from this and the fact that b1 is a right factor of a that £0"e must be a right
factor of a. Recall that b, = el"f is also a right factor of a . Thus

one of the two words fO"e and el”™f must be a right factor of the other. Suppose £0™e

is a right factor of e1™f and for every word x let Z(x) = the number of O's in x. Then
z(£0"e) = 2(f) + m + z(e) < z(el™f) = Z(e) + Z(f). This is impossible. A similar argument
based on counting the number of 1's in a word disposes of the possibility that el”f is

a right factor of f0"e. [

This lemma gives us information ahout 0O(a); it tells us that as long as A has at
least two elements, at least one of those elements, say 1, can be inserted between two
copies of a as often as we wish without inadvertently producing a third copy of a, and
hence |al + n ¢ 0(a) for n =1, 2, 3, .... This in turn says that when computing 0(a),
we need check only 1,2,..., |al.

PROPOSITTON 7. 1f A contains at least two elements and a is a given, nonempty word
over A, then the interval [|a| + 1, ») in Z is contained in 0(a).

This result gives significance to the following characterization of ran(T) and G(T)
when T is a characteristic parallel map:

PROPOSTITION 8. Let T be a characteristic map for (al,az,...,an). We identify
(al,az,...an) with the word a = alaz...an. Then f ¢ ran(T) if and only if

(1) f takes on only the values 0 and 1, and

(2) if i and j mark successive occurrences of 1 in f with
i < j, then j - i € 0(a).

then ((T) is of course the set of confignrations which fail to satisfv (1) or (2).
PROOF. 1t is trival that members of ran(T) satisfy (1) and (2). Suppose f satisfies
(1) and (2) and W is the window for T. We begin construction of a configuration g by
placing a copy of a on every interval k + W for which f(k) = 1. If two such intervals
kl + W and k2 + W happen to overlap, we know from the definition of 0(a) that we shall
be able to contruct both copies simultaneously. If there are intervals between the copies
of a where g has been assigned no value, we know from Lemma 2 a constant value can be
assigned there which will not produce any extra copies of a word a. In this way we can
construct g in such a way that g has a copy of a at k + W if and only if f(k) = 1, and
thus Tg = f. [
PROPOSITION 9. Suppose A has at least three elements and T is a characteristic map
for the word a over A. Then f € WG(T) - G(T) if and only if
(1) Tf = Svf for some integer ¢,
(2) f is not the constant O configuration,

(3) f has neither a first nor a last integer at which
it takes on the value 1, and

(4) if i1 and j mark successive occurrences of 1 in f,
then |i - j| < |al.

PROOF. Let W = the window for T and assume 0, 1, 2 € A.

Suppose f ¢ WG(T) - G(T). Proposition 1 implies (1). By Lemma 2 we may, without
loss of generality, assume the word al™a contains no third occurrence of a for every
natural number n. This implies the constant configuration g of value 1 contains no
copies of a, and hence Tg = 0 (the constant configuration of value 0). Now if we examine
the proof of Lemma 2, we find the only property of O and 1 used there was the fact that

they are distinct; we could just as easily have used 0 and 2. We deduce from this
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that there can be at most one element of A, say 0, such that a word of the form aOmu.
where m is a natural number, can have a third occurrence of a. So we can, without loss
of generality, also assume that for every natural number n the word a2"a contains no
third occurrence of a. Thus the constant configuration of value 2, h, satisfies Th = 0.
Since the constant zero configuration has two pre-images, it cannot be a weak Garden of
Eden, so (2) holds. For the rest of this first half of the proof we continue to assume
every al"a and a2"a contains no third occurrence of a. Suppose j is the last integer
at which f(j) = 1. Let g = S—Ef where Tf = Slf; this means Tg = f. We must have a

copy of a at j + W in g. Suppose r is the largest integer in j + W. Define

gl(i) = g(i) if i sr

1 if r+1 £ 1
gz(i) = g(i) if i < r

2 if r+41 < 1i.

Then 8 and gy have copies of a at k + W if and only if g does, so Tgl = ng =Tg = f.

So f must have distinct pre-images, an impossibility, and we conclude there is no last
integer at which f takes on the value 1. Similarly there can be no such first integer.
Hence (3) holds. Let us continue with g as defined above and suppose integers i and

mark successive occurrences of 1 in f where j > i and j - i > |a|. This means g has
copies of a at i + W and j + W and also that between these two intervals there is an
interval J which overlaps no copy of a. By changing the values of g on J first to 1

and then to 2, we can construct two different pre-images for f. Since this is impossible,
(4) holds.

Now suppose f is a configuration satisfying (1) - (4). We know from (1) that S_Lf
is a pre-image of f under T. Suppose Tg = f. For every j such that f(j) = 1, we must
have a copy of a at j + W in g. Taking this fact in conjunction with (2) - (4), we
see that g is covered by overlapping copies of a and hence is uniquely determined;

-9
thus g =S f. So f € WG(T) - G(T). O
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