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ABSTRACT. A method for calculating the fundamental group of a knot is given. This
method can be used to obtain group presentations with fewer generators and relators

than other methods.
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1. INTRODUCTION.

In most recent books on knot theory, the fundamental group of a knot is determined
by the Wirtinger method. For alternating knots of n crossings, this method gives
us a group with n generators and n relations. For non-alternating knots it is
only slightly more economical. If one wants a simpler presentation, one then must
make some algebraic observations and substitutions to reduce the presentation. In
this paper, we describe a method for determining the fundamental group of a knot which
can give us far fewer generators and relations than the Wirtinger method. The reduc-
tion in generators and relations is accomplished geometrically. This gives us a better
understanding of the relationship between algebra and geometry in the fundamental
group. This method is then used to show that all knots of seven or fewer crossings
are one relator knots and all knots of . ight o1 nine crossings have presentations with
two or fewer relators. All work here is in the piecewise linear category.
2. DETERMINING THE FUNDAMENTAL GROUP.

A knot is defined as a piecewise linear image of S1 in 53. We will think of

the knot as being slightly thickened or as being a knotted torus. The fundamental
group of a knot K is wl(s3 - K), but we will often write "I(K)' For our purposes

we want to view the knot in the manner in which one would tie the knot with a rope

3

having two ends. To accomplish this, we use the fact that § is the union of two

solid cubes identified on their boundaries. From S3 - K we remove a cube which is
pierced by the knot such that this section of the knot is unknotted. The knot then
lies inside of a solid cube with its two ends on the boundary of the cube. Diagram 1

shows the trefoil in this way.



572

M. J. DUGOPOLSKI

Diagram |

We now need to see that nl(S3 - K) is the same as the fundamental group of the

solid cube with the knot drilled out of it. This is easily seen using Van Kampen's

theorem as stated by Rolfsen [1]:

If X = X u X2 and X1 n x2 = XO’ then to obtain nl(X) one throws together
the generators and relations from nl(Xl) and 7w {Xz) plus one relation
for each generator of nl(XO) which says that its image in nl(Xl) and

nl(Xz) are equal.

To determine "I(K) we start with a projection of K , just as in the Wirtinger

method. We remove a cube at an undercrossing which lies adjacent to an overcrossing.

We look at a projection of the knot onto the bottom of the cube, but keep the knot

just slightly above the bottom plane, except at the ends which are attached to that

plane. See Diagram 2 for an example using the knot 4y of Rolfsen's table [1].

@- =

Diagram 2

Now at each overcrossing we drill out a hole coming up from the bottom plane and

then back down as in Diagram 3. If we ignore the knot, T, of a cube with three un-
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Diagram 3
knotted holes drilled out is free on three generators, f{a,b,c}. The disks shown in
Diagram 3 are thought of as the generators and the arrows shown by the disks are for
orientation. A loop in this space determines a word in the free group according to

which disks it passes through and in which direction, i.e., b 1is with the arrow

and b“1 is against the arrow.

Now, since we separated the knot at an undercrossing which was adjacent to an
overcrossing, there is a direction in which we can traverse this knot which starts
with an overcrossing. Take the drilled out hole corresponding to this overcrossing
and deform the cube with holes by pushing that first hole around the path of the knot,

just as if we were tying the knot. See Diagram 4.

Diagram 4

The fundamental group of the cube with holes is unchanged by this deformation,

it is still the free group. We now fill in all of the holes except the one forming
the knot. By Van Kampen's theorem, each hole we fill in introduces a relation into
the free group. In our example we fill in b and c¢ , giving us a group with three

generators and two relations as the fundamental group of the knot Al' The Wirtinger
method would have given four generators and four relations. Later, we will modify our
method to see that 41 is a one-relator knot.

3. DETERMINING THE RELATIONS.

To determine precisely what the relations are, we must keep track of how the disks

under holes are deformed. We do this now for the knot 41. When a pushes through
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b, b must be deformed so that a does not actually pierce b . See Diagram 5. We

so that b always stays out in front of a as a moves over the

keep stretching b

rest of the knot. Lﬁ

Diagram 5

To keep track of these disks, we draw a diagram of what is taking place on the

bottom plane, using arrows to account for the orientations. See Diagram 6. This dia-

as shown in Diagram 7. When we fill in c¢ we get the

gram then tracks across ¢
Since b~lab = c¢-!

1 determined by the meridian shown in Diagram 7.

relation b-labe =

we can think of pushing ¢l after this instead of b lab. Now, from Diagram &4, we
We get the picture

see that c~! goes under a , under c¢ , and finally over b .

b 1
}
a v
|
b v

Diagramn *

Diagram 7

shown in Di i ~1a=1"
iagram 8 and the relation c~la~!¢™lacb = 1. Thus the fundamental group of

the knot is {a,b,c; b-lab = ¢7!, c-la-lc-lac = b~!},
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Diagram 8

OO O

We can perform the process just described on any knot. If it is an alternating
knot with n crossings, we eliminate one crossing to get it inside the cube, drill
holes at the remaining n - 1 crossings, then fill in n - 2 holes for relations.
This proves the following theorem.

THEOREM 1. The fundamental group of every n crossing alternating knot has a presen-
tation with n - 1 generators and n - 2 relations.

The trefoil knot has a presentation with two generators and one relation and there
is no presentation with fewer generators or relations for the trefoil. We conjecture
that the trefoil is the only alternating knot for which the number of generators and
relations guaranteed by Theorem 1 cannot be reduced.

A nonalternating knot has either two consecutive undercrossings or two consecutive
overcrossings. We can assume there are two consecutive overcrossings. Then, in deter-

mining Ty, we drill our hole over more than one segment of the knot, reducing the

number of generators and relations by one each. We may conclude the following theorem.
THEOREM 2. The fundamental group of any nonalternating knot of n crossings has a
presentation with n - 2 generators and n - 3 relations.

4, MINIMIZING THE PRESENTATION.

For most knots we can find presentations with far fewer generators and relations
than the numbers guaranteed by Theorems 1 and 2. As we described earlier, each hole
drilled up from the bottom plane of the projection determines a relator and we need to
drill holes until the fundamental group of the block is free.

We now look at the knot 41 again, but this time we drill only one hole parallel

to the knot as shown in Diagram 9.

Diagram 9
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We then deform the block by sliding the knot over the hole to get the situation
shown in Diagram 10,

“3

Diagram 10

Further . formarions as shown in Diagram 11 unravel the two holes and show us
that the group is now free. Notice that to unravel the holes, we repeatedly slide

one end of one hole out from under the other hole. Thus the knot 41 is a one-relator

knot. In order to sec what the relation is, we reverse the steps of Diagram 11,
keeping track of how the disks a and b are deformed in the process. We then slide

- -1.-1 -1 - -
b over a to get the relation b 1aba 1b ab "a lb =a 1 .

(T

Diagram 11
Instead of drilling a hole alongside of the knot and then sliding the knot over

the hole, we can accomplish the same thing by breaking the knot at an undercrossing
and keeping the ends on the bottom plane of the cube. Thus, if we start with a knot
projection and breaking it at two undercrossings causes the knot to unravel, then the
knot is a one-relator knot. We must keep in mind that the unraveling is a deformation
of the cube with holes and we can onlv slide an end of the knot out from under another
segment of the knot. Diagram 12 shows that the knot 76 is a one-relator knot.

The above method shows that in general a knot which unravels because of n
breaks at undercrossings has a presentation with n generators and n - 1 relations.
It is a simple matter to go through a knot table to establish the following theorem.
THEOREM 3. All prime knots which have nrojections of seven or fewer crossings are
one-relator knots. All prime knots which have projections with eight or nine cross-
ings have presentations with two or fewer relations.

Although this unraveling method will establish a great many knots as : ne-relator

knots, the method does not appear to be conclusive. Diagram 13 shows a one-relator
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knot wher is i
€ a is -li1d over b several times, but we (annot break the projection in

two places and uaravel the knot.

Ideally, we would like to obtain an algorithm that would determine where to drill
the holes and the minimum number of holes required in order to make the group free.
This seems to be a difficult problem. Diagram 14 shows how to construct a knot whose
group can be presented with two relators, but where the two drilled holes would be
difficult to locate. This example shows that the holes used for the relators can be
knotted. Holes a , b, and ¢ are drilled in the cube, b 1is slid around c¢ in

order to knot b , a is slid over b several times, then b and ¢ are filled in.

In spite of the difficulties that may arise in finding where to drill the holes,
we still believe there is a close relationship between the drilled holes and the rela-

tions of the knot group. We conjecture that ™ of any one-relator knot can be made

free by a single hole drilled in the solid cube containing the knot. We also conjec-—

ture that if LE} of a knot is known to have a presentation with n relations then
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the knot can be formed by drilling n + 1 holes in a cube, sliding these holes arou:d

and filling in n of the holes.

@@

Diagram 14
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