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ABSTRACT. In this paper, exact null distribution of the likelihood ratio criterion
for testing sphericity structure in a complex multivariate normal covariance matrix
is obtained in computable series form. The method of inverse Mellin transform and
contour integration has been used. Certain special cases are given explicitly in

terms of the hypergeometric functions.
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1. INTRODUCTION.
Let 2' = @i,...,g&) be distributed as a complex multivariate normal with mean
vector ' = (Ei""’E&) and Hermitian positive definite covariance matrix I, and

= - 7. -y )" =
let Et be of order P; x1l, t=1,...,9. Also, Let E{(Z_t Et)(zj gj) } th

t,j =1,...,q. Consider testing the following hypothesis

ol1 0 0 ....0
Py
0 o, I o .... O
2 P,
H: I = . . . . vs. A: #H
2
0 0 0 ... .01l (1.1)
L q Pq
where oi > 0 1is unknown, Ip is the identity matrix of order Per t=1,...,9
t

and Py * - +pq=p.

It is easy to see that the likelihood ratio criterion for testing H is a one
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to one function of

q Py
U= [Al/ T (tr A /p,) 1.2)
t=1
where
N B _ N
= i = - - ' =
A= (Atj) with Atj kfl(z{k Z-t.)@jk Ej-) 4 Nzt. kiléxk'
Etk is the k-th independent observation on Z{, k=1,...,N, t=1,...,q.
The h-th moment of U is given in Nagarsenker and Nagarsenker [1] as
hpt
) = nd P Tp,) R + 1 - 3) + h} (1.3
e=1\I{p (0 + h){) j=1 T(n + 1 - j)

where n=N-1 (>p), and Re(h) > -n - 1 + p.

Note that when q = 1, the hypothesis defined in (1.1) is the well known
Mauchly's sphericity hypothesis. The non-null distribution of sphericity criterion
was given by Pillai and Nagarsenker [2] in series involving zonal polynomials and
G-functions. Mathai [3] expanded G-functions in series involving Psi and Zeta
functions. Nagarsenker and Das [4] derived the null distribution and gave percentage
points. Krishnaiah, Lee and Chang [5] approximated the distribution of certain power
of the test criterion by Pearson's type I distribution.

Recently, Nagarsenker and Nagarsenker [1] derived the distribution of U for
testing (1.1) in terms of beta and chi-sqaure series. They have also obtained
asymptotic results using Box's method.

In this article the exact null distribution of the test statistic U for
testing (1.1) is derived in terms of generalized hypergeometric function as well as
in series form by using inverse Mellin transform, definition of G-function and
calculus of residues. First in section 2 the density is expressed in Meijer's
G-function and some special cases are given explicitly. In section 3, this density
is given in series of the Psi and Zeta functions. Some special cases for p < 5
have also been given.

2. THE DENSITY IN MEIJER'S G-FUNCTION.
Using inverse Mellin transform and the expression (1.3) the density of U is

given by

£w) = 2m) H w T PEWMan, 0 <u <1, (2.1)
c

Ni=

where w = (-1)®, and C 1is the contour enclosing all the poles of the integrand.

Simplifying (1.3) by using Gauss-Legendre multiplication formula (Luke [6]), we have

p. -1
P t
E(Uh) = K(pl,...,pq;n) '(n-p+3j+h)/n T I'(n+ h+ j/pt) (2.2)
i=1 t=1 j=0
where
P q np, -}
Kperenspim) = (20 ®D/2 1o+ 12 )31 (rp)/p, © ) (2.3)
1 q j=1 t=1
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Now, substituting (2.2) in (2.1) and subsequently putting n - p + h = a, the

density is obtained as

-1
-1 n-p-1 P . Pe : -a
£u) = K(Pys- -+ »Pgim) (210) u [ {nr@+3)/ 0 1 T(+p+j/p) u da,
C1 j=1 t=1 j=0
0<ucx<l (2.4)

where C; is the changed contour and the constant K(pl,...,pq;n) is defined by
(2.3).

Using the definition of G-function (Luke [6]), the density given in (2.4) can be
put in the form of the following theorem.

THEOREM 2.1. The p.d.f. of the test statistic U defined by (1.2) for testing
the hypothesis (1.1), in the null case, is given by

-p-1
f(u) = K(Pl,---.pq;n)un J

p-1,0 {p,repeated q - 1 times},{p + 3/pe»3=1,...,p-1,t=1,...,q}

p-1,p-1{"]{j,5=1,...,p - 1}

.

0<ux<l1 (2.5)
where K(pl,...,pq;n) is given by (2.3).
When q =1, we get the distribution of the sphericity criterion as a corollary

of the above theorem.

COROLLARY 2.1. The p.d.f. of the test statistic U = [A|/(trA/p)P for testing

H: I = ozlp in the complex normal population is given by

= . n‘P'l p-1,0 P+ J/P, j = 1»---,]3 -1
f(u) = K(p;n)u Gp_l’p_lEllj’ =1, p , 0<uc<l1 (2.6)

where the constant K(p;n) is obtained from (2.3) by substituting q =1 and Py = P-
The following special cases of (2.5) are stated below by using the results on

G-function.

(i) a=1, p=2

f(u) = {B(n - 1,3/2)}’1u"'2(1 - u)%, 0<uc<l

where B(a,b) = r(a)r(b)/r(a + b).
(i) q=1, p=3

f(u) = {wF(Sn)/33n+%1"(n)F(n - DI - )3
(1 - wF (4/3,5/3:431 - w), 0 <u<l.

(1i1) q=2, p =p,=1

f) = (- Du™2, 0<uc<1,
(iv) q =2, P1=1, p2=2

f(u) = {r(2n)/15 x 22"“4r(n - 1)r(n - 2)}un-3

(1 - u)5/22F1(3/2,1;7/2;1 -u), O0<uc<il,
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) q=3, Py =P, =Pz = 1

fw = - 1D%m- 2" 30 -u+ulogu), 0<u=<i,

where 2F1 is the Gauss' hypergeometric function.

3. THE DENSITY IN SERIES FORM.
Denoting the gamma products of the integrand in (2.4) by 4(a), and after
cancelling out the gammas occuring in the numerator with those of denominator, we get

(see Gupta and Nagar [7], and Nagar et. al. [8])

P-q
T T(a+ j)
j=1
Aa) = . (3.1)
p,-1
-1 i peg 4 t
T @+ P01 or@+p+isp
j=p-q+1 t=1 j=1
o S.
The poles of A(a) are available by equating to zero each factor of 1 (a + i) 1,
i=1
where thc exponent Si gives the order of the pole at a = -i, which can be seen to
be
i, i=1,2,...,p -1
Gi =
p-9q i=pp+1,.... (3.2)
The integrand in (2.4) is A(a)u-a and if a = -i is the pole of order Gi
then the residue Ri at a = -i is given by
1 p i 65 . -a
R; = G- lim R g {(a + i) "A(a)u '}
i a > -i i
Ja
§.-1 8. -1
i i §. -1
1 . ] -a 1 . -a 1 (r)
= ————— lim {A,u "} ————==¢ lim u "~ 5 ( ) (-log w)A,;
(Gi - 1! o > -i aaai-l i (éi - ! e -i 10 T i
(3.3)
where
S,
A= (a+ 1) a0
ai P-q
I " (e+i+1) 1 (e + j)
j=a_ +1
= 1 »
. 8;-1 j i-1 a, P,-1
T+ n@ed) 1 @+)* 1 1 r@rpei/py
jes j=1 j=a, t=1 j=1
1 3.4)
S={p-q+1,...,p - 1} - {i} (3.5)
and
i) i=1,2,-~-»P'q
a; =
P-9, i=p-q+1,.... (3.6)
Now
A, 3log A,
) _ i i, _
A7 =5 T ACT) = AR
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and
r-1
9 (A.B.) r-1 1.
AlD o i 11wy (m) (3.7
i r-1 m i i
Ja m=0
where
b - dlog Ai
i da
. - . . -1
=ape+i+s )+ T Yla+ ) - X (J-pra)at])
j=a.+1 j€S
i
21 . i-1 4 a Pt
- I jle+3J) - ay I (a+3) - I I Y(a+p+ j/Pt) (3.8)
j=1 j=ay t=1 j=1
and
m m+1
B(m) ) 9 Bi ) 9 log Ai
1 3" Bam+1
P-q -1-
s ED™mifagme e i v ) v 3 tmeLas i) v I Gopr) (et
j:a,+l jES
i
. -1-m -1 -1-m P
+ £ jla+3) +a, I (a+73) - I I r(m+ l,a+p+ j/pt)]°
j=1 j=ai t=1 j=1
(3.9)
From (3.3) we can write
o St 83-1-r
R, =——=7 I ( )(-log u) A, (3.10)
S CAIEI D EANL 10
where
Agr) = Agr) at o = -i
i0 i
™l 1., (r-1-m)_ (m)
=t (1 DA B3 (3.11)
m=0
with
Aio = Ai at o = -1
-q
n TG - 1)
) J=ai+1
j-p+q N j -t 3 Pt
n@G - 1) mn (G - 1) n (- 1) b n T(-1i+p+ j/pt)
j€s j=1 j=ai t=1 j=1
(3.12)
B =B at a = -1i

i0 i
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sagM+ T WG - - 1G-praG-DT!

j=ai+1 jes
a;-1 1 i-1 1 q -1 )
- jG-4) -3 I (G-1) - L TU(-i+p+ i/py) (3.13)
j=1 j=a; t=1 j=1
and
(m) _ p(m) - s
Bio = Bi at o i
P-q ) R
= eD™mifacme L, T o tmel,j-i) e EG-pra)G -
. j=a,+1 jes
1
. -1
i -1-m i-1 am 37 . .
+ T jG -1) +a, I (-1) - I L t(m+1,-i+p=+j/p)}-
j=1 j=a, t=1 j=1
1
(3.14)

Note that ¢(-) and Z(-,-) respectively are the Psi and Zeta functions (Abramowitz
and Stegun [9]). Using residue theorem, the integral in (2.4) is evaluated as a sum
of residues and the density of U is given in the following theorem.

THEOREM 3.1. The p.d.f. of the test statistic U defined by (1.2) for testing

the hypothesis (1.1) is given by

§.-1
© i i §.-1 §.-1-r
n-p-1 u i i (r)
f(u) = K(Pl,...,Pq;n)u P ifl TE;_T—TTT rfo (", )(-log v Ajo (3.15)

where K(p,...,Pgin), &; and (D) are given by (2.3), (3.2) and (3.12)-(3.14)
respectively.

The cumulative distribution function F(u) of U can be obtained by straight
forward integration of (3.15).

When q = 1, we get the distribution of the sphericity criterion as a corollary of
the above theorem.
COROLLARY 3.1. The p.d.f. of the test statistics U for testing H: I = 021

P
in the complex normal population is given by
p-1 i i-1 ., :
- .y,.n-p-1 u i-1,. i-1-r, (1)
£ = K@ E oy O D Cles wi T A

i=p r=0
where K(p;n) and Agg) are obtained from (2.3) and (3.12)-(3.14) by substituting
qQ=1, p; =P
The following special cases of (3.15) are stated below which have been simplified
by using the results on gamma, Psi and Zeta functions.
(i) a=2, p =1, p,=3
K(l,s;n)u“'s[ u _u?(-1og u + 3log 3 - 117/20)
2r(10/3)r(11/3) T (7/3)r(8/3)
u3 2
YV ) (-log u)® + (-2log u)(3log 3 - 2) - =

f(u) =

z, 3% + (3log 3 - 2)°%}
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- j
4 . (2/3)1(1/3)3-u

u (200 + 3 + G+ Do)
TA/DT3) 520 5+ 1G + G + D12

+

- logu- W@+ 2/3) - v(§ + 1/3)ﬂ , 0<u<l.
(ii) q = 2, Py =Py = 2

2
f(u) = K(2,2;n)u“'5r 2u _u“(-logu +24lgg 2 - 16/3)
|31' (7/2) 2r°(5/2)
PE“" 2 Zﬂz
-— {(-log u)® + (-2log u)(4log 2 + 3/2) +41/4 - =
4T (3/2)

® i2. .
+ (alog 2+ /%) + 1 urdoded o
i=4 (i - 3)({ - D{E - T (%)

(logu+20(i -1+ G- G- 29@ -4+ i)}_J,
0 <uc<l.

(iii) q = 3, Py =Py = 1, Ps = 2

2
_ ._y..n-5 u u“(-log u + 2log 2 - 11/3)
f(u) = K(1,1,2;n)u [}F(7/2) - T(5/2)

u3 2 ﬂ2 25 2
- 41‘(‘37_2){(‘103 u)“ + (-log u)(2log 2 + }) - 5+ g+ (2log 2+ D

; TG - 4+ Put i

- 2. 2 :
i=4 (i - )3 - N°E - nIr (5)_]
(iv) q = 4, pl = pz = P3 = P4 =1

+ 0 <uc<l.

3 2
fu) = B2V OB =3y gz + tog u) - 2uP((-log u + 5/2)% + 9/43],

0 <uc<l.

v) p=5, q=4, P = 2, P, = Pg = Pyg = 1

. n-6 u 167 -u
f(u) = K(2,1,1,1;n)u [Tmﬁ + (-log u + 2log 2 - ﬁ)(m)

2
+ {(-1log u)2 + (-2log u)(2log 2 - l%) + 2%% - 13 + (2log 2 - l—2—7-)2}

137 x?
3

3
Grrarzy) + ((-log w?® + 3(-log w)?(210g 2 + 3 + 3(-log w &

2
7.2 355 137 o« 7 7.3
+ @log 2+ DY) v 120(3) + 35+ 383 - Ly (210g 2 + ) + (20g 2 + )
4 5 e 1.l
(12r‘é3/2))* rlzl) t =5 2 3 » 0 <u<l.
320 3+ 3G +G+1)E + O

(vi) p =5, Py = +-- = Pg = 1
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2
fw) = (- - 32w - 23 - 1)%"'6[6%8 - Ye(-log u - 4)

- L ((-10g w? - 3(-log u) + By

4
+ 2 {(-1log u)3 + 13(-1log u)2 + 403(—log u) + lgli} ,
36 6 9
0 <u«<l.
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