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ABSTRACT: This paper is concerned with the notion of "ordered Cauchy space' which
is given a simple internal characterization in Section 2. It gives a discription
of the category of ordered Cauchy spaces which have ordered completions, and a
construction of the "fine completion functor" on this category. Sections 4 through
6 deals with certain classes of ordered Cauchy spaces which have ordered comple-
tions; examples are given which show that the fine completion does not preserve
such properties as uniformizability, regularity, or total boundedness. From these

results, it is evident that a further study of ordered Cauchy completions is needed.
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0. INTRODUCTION.

Cauchy spaces provide a completion theory much more general than that obtained
from metric or uniform spaces, and much simpler than that arising from uniform
convergence spaces. R. Ball [1], [2] has shown the applicability of Cauchy spaces
in the study of lattice completions; the compatibility between lattice and Cauchy
structures is obtained by requiring the lattice operations to be Cauchy-continuous.
While this compatibility criterion is quite natural it is not appropriate for more
general order structures, such as partial orders, and may be too restrictive even
for some lattice applications.

L. Nachbin [9] has defined an "ordered uniform space" by requiring that the
uniform and order structures arise from a common source, that being a quasi-uniform
structure on the same underlying set. We adapt Nachbin's method to define an
"ordered uniform convergence space", and from this the definition of '"ordered
Cauchy structure" follows naturally. The resulting notion of "ordered Cauchy space"
is given a simple internal characterization in Section 2.

The development of a completion theory for ordered Cauchy spaces is compli-
cated by the fact that some ordered Cauchy spaces do not have ordered completions.
In Section 3, we describe the category of ordered Cauchy spaces which have ordered
completions, and construct the "fine completion functor' on this category. The
remaining sections examine certain classes of ordered Cauchy spaces which have
ordered completions; examples are given which show that the fine completion does
not preserve such properties as uniformizability, regularity, or total boundedness.
From these results, it 1s evident that a further study of ordered Cauchy completions

is needed.
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1. PRELIMINARIES.

Let X be a set, and F(X) the set of all (proper) filters on X. If
F,% €F(X), and FNG# ¢ forall Fe€ F, G €&, then F U & denotes the
filter on X generated by {FNG: F € F, G € #}. On the other hand, if
FNG=¢ for som F € F and some G € ¥, we say that F U & fails to exist.

If A cX,A# ¢, we denote by <A> the filter of all oversets of A; one departure

from this convention are the fixed ultrafilters, which are denoted by x , for

x € X.

Turning to the product set X x X, the diagonal {(x,x): x € X} 1is designated

by A. Compositions are defined as follows: for subsets A, B of X x X,
AoB-={(x,y): there is z € X such that (x,z)€ A and (z,y) €B}. Compo-
sitions and inverses of filters on X x X are defined in the obvious way. If
AcCXxX and HCX, then A(H) = {y € H: (x,y) € A for some x € H}; if, in
addition, G € F(X x X) and ¥ € F(X), then AQ), G(H), and GA) denote the
filters on X generated by the sets {A(H): H €¥}, {A(H): A €G}, and
{A(H): A € F, H€ H)}, respectively.

DEFINITION 1.1. A set 0 of filters on X x X 1is called a quasi-uniform

convergence Structure on X if:

) deo
(uz) 3N &€ 0 whenever F, € o
(u3) Fo &€ 0 whenever F, & € 0 and Fo S exists
(u[') FJ€0 and F C 4 implies € 0.
If o satisfies the additional condition
(uS) ¥ €0 implies 371 €0

then 0 1s called a uniform convergence structure on X.

Quasi-uniform convergence structures are natural generalizations of quasi-
uniformities. Uniform convergence structures were introduced by Cook and Fischer
[3]; another term often used for the same concept is “pseudouniforme Struktur"
(see [6]).

A subset 0' of a quasi-uniform convergence structure 0 is called a base for

o if, for each & € 0, there is B € g' such that B < & . One convenilent hosc

for any quasi-uniform convergence structure ¢ is Op { &co:8 c <>}

The set Q (X) of all quasi-uniform convergence structures on X forms »
complete lattice under the natural ordering (the dual of set inclusion). If
p, 0 € QU(X), then p A 0 has for a base all finite compositions 31 0 uu. 0.3“.
where for each j,.&j € Py oI '&j € Opr If o € Q“(X), then 0V O is the
uniform convergence structure on X induced by 0. The lattice operations "v'" an!
"

structures) will always be taken relative to the lattice Qu(x).

applied to quasi-uniform convergence structures (including uniform convergence

DEFINITION 1.2. A set C of filters on X 1is a Cauchy structure on X if:

(c)) x €C, for all x €X
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(c,) 3€C and Fc & implies € C

(c3) If ¥, & € C and ¥ U & exists, then 3 N & € C.

A subset B of a Cauchy structure C is a base for C 1if, for each § € C ,
there is & in P such that & <€ ¥ . With every uniform convergence structure U
on X, there is associated the induced Cauchy structure (3u ={ F € F(X):
¥ xF € u}l. On the other hand, one can associate with each Cauchy structure
a finest compatible uniform convergence uc , with base consisting of all finite
intersections of filters of the form ( Fx &) N A, where ¥ € C  (one can show

that this set of finite intersections is closed under finite compositions). Also

associated with a Cauchy structure C on X is the convergence structure qc

defined by: F->x in (X, qc) 1ff 3Nx€C.

If f: (Xl’ (:1) -> (XZ’ C2) is a function from one Cauchy space to another,
then £ 1is Cauchy-continuous if £(F) € C2 whenever & € C'.1 .

We next consider the notation and terminology associated with an order
relation < on X. We shall always assume that (X, <) is a poset, and we identify the
order relation with its graph 6= {(x,y): x =y} € X x X. Indeed, it will usually
be convenient to designate the poset by (X,6) rather than the more conventional
notation (X, <).

Let (X, 6) be a poset; let x € X, AC X, and ¥ € F(X). Then
6(x) = 6({x}), 6(A), and @©(¥) are the increasing hulls of x, A, and ¥,

respectively. The decreasing hulls are 8-1 (%), &-1 (F), respectively. The convex

hull of A is AA = 6A) N s-l(A), and A 1is convex if A = AA; similar

notation applies to filters. A Cauchy space (X, C) is locally convex if 3h €C

whenever & € C .
If (Xl, (91) and (Xz, @2) are posets, a function f: (Xl, Gl) -> (XZ' @2)
is increasing if f( (91) < ®2 (equivalently, if f(xl) = f(xz) whenever X, = x2).

2. ORDERED CAUCHY SPACES.

Throughout this section, (X, ©) will be an arbitrary poset.

DEFINITION 2.1. Let (X,U) be a uniform convergence space. Then (X, 6, u)

is an ordered uniform convergence space if there is a quasi-uniform convergence

structure 0 on X such that <6> € g, u=o0 v 0_1, and 6= U{NG: G¢ a}.
DEFINITION 2.2. Let (X,C) be a Cauchy space. Then (X,6,C) 1is an

ordered Cauchy space (abbreviated o.c.s.) 1f there is a uniform convergence

structure y on X such that (X, 6, u) 1is an ordered uniform convergence space,
and C = C .
" u

We see that (X, 6,C) is an o.c.s. iff C and ® are both determined by some
quasi-uniform convergence structure 0 on X (in the sense described in the preceding
definitions). We shall obtain a more precise characterization of of this concept
by making use of a particular quasi-uniform convergence structure o 6,C con-
structed directly from © and Cg. Let Tg= { 4 FX x X): <6>c &} be the

quasi-uniform convergence structure on X generated by 6. If C is a Cauchy
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structure on (X, 6), we define 0@ c =0g AU ; we also define the associated

uniform convergence structure He C = (OG C )y v (OG C )

LEMMA 2.3. Let (X,06) be a poset. For arbitrary filters F,4 on X, the
following statements are equivalent:

(a) 6(F) U & exists.

(b) FU G_I(J‘) exists.

() 6@F) U 612 exists.

(d) (3Fxd) U <6> exists.

(e) (FxF) o <O> o <& x&> exists.

Let (X,0) be a poset and C a Cauchy structure on X. A relation < is
defined on C as follows: If JF, &€ C, then & < & iff there is a finite set
of filters ul,...,un in ¢ such that 6(@) U )11,..., SCﬂn) Ud all exist.
This relation is clearly reflexive and transitive, but not generally anti-symmetric.

PROPOSITION 2.4. Let (X,6) be a poset, C a Cauchy structure on X. Then
%.c has a base of filters of the form (N{ G-l( 3j) X G(ﬂ'j): j=l,...,n})N<B>
’
where 33‘ 5,,93,, 1<j<n.

PROOF: Assume F < 4 in C. Then there is ul,..., ¥ in C such that
6® U M,eey OCH) U all exist. Thus 6 1(3) x o) -
<B> 0 [FxF] ©° <6>0 [l:l1 x ]:ll] 0 <B> ..., 0<06> 0 [&xb] 0o <O>
) or pc s
(9-1(3) x 0% €0 6c ° Finite intersections of such filters are also in

exists; since each component filter in this composition is in either o

g 6.C° and so ¢ 6.C contains all filters of the indicated form. Furthermore,

I, has a base of filters of the form <6> o Gl 0 <B6>o0 ... 0 <B> °G'n o <8 >,

where each Gj is a basis filter for uc , that is, a finite intersection of filters

of the form F x F , where F € C. A straightforward set-theoretic argument shows

that all such basic filters for UG,C can be expressed in the form specified in

the statement of the proposition. |
PROPOSITION 2.5. Let (X, 6) be a poset,

,& € C. Then ¥ < & iff Fxd ¢ OG,C'

C a Cauchy structure on X, and

PROOF. If F <& , the preceding proof shows that ¥ x& is in 9 ¢ since

@'1(3) x ©6(%) < F x & . Conversely, suppose Tx& € 9g,c - Then, by

e in with
Proposition 2.4, there are filters '}1,..., 3 and .8' , , Jvn c

% < 4 ,1<J<n,suchthat(ﬂ{® ("f')x @(,&) j=1l,...,m}) 0 <6> c
;< A
Fx & . If
_1 .
i, (3xg) U(e (3j) X (9(,&3,)) exists. This implies

(Fx&) U <6> exists, then ¥ < & is clear. Otherwise, for some
F< F < & < &, and the
M TR

proof is complete. §.

PROPOSITION 2.6. Let (X,6) be a poset and C a Cauchy structure on X.

i = : is compatible

Then (X,6,C) is an o.c.s. iff 6 = u{nG: Ge o S,C} and He,C i p
with C.

PROOF. If the two conditions are satisfied, then (X, 6,C) is an o.c.s. by

Definitions 2.1 and 2.2.

Conversely, assume that (X, 6,C) 1is an o.c.s., and let Y4 be as in
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Definition 2.2. Then 6=U{NG:G €0y Au} 2UNG: G €0y o} 26 ; thus the
<
=u

o

first condition holds. The second follows because u = u , and the fact

c 6,C
that ¢ and u~ are both compatible with C . |
PROPOSITION 2.7. If (X,6) is a poset and C a Cauchy structure on X, then

=UNa: Geo } Oiff x < y implies x =< y.

6,C
PROOF. With the help of Proposition 2.5, we have x < ;' o x x ;: € 0@ (‘“
A
(x,y) € U{naGa: Ge Og ¢ }; the conclusion follows from these observations. |
’
A poset with Cauchy structure is defined to be T2—ordered if ;: < ;' implies
x < y. This terminology coincides with the definition of "Tz—ordered" for

convergence ordered spaces in [8] if we identify a convergence structure as a

complete Cauchy structure. It follows from Proposition 1.2, [8] that if (X,6,C)
is a Tz-ordered poset with Cauchy structure, then & is closed in X x X.

A poset with Cauchy structure (X,6,C) which is locally convex is said to
satisfy Condition (0C), . If F 0 4 € C whenever ¥ < & and 4 < &, then

(X, 6,C) 1is said to satisfy Condition (OC)2 . Finally, if (X,6,C) is

Tz—ordered, then we say that Condition (OC)3 is satisfied.

~

PROPOSITION 2.8. An ordered Cauchy space satisfies conditions (oc)l, (OC)Z’
and (OC)3.

PROOF. Let (X,6,C) be an ordered Cauchy space. Condition (OC)3 is an
immediate consequence of Propositions 2.6 and 2.7. Proposition 2.6 also asserts
that u is a compatible with C; this fact will be used to establish (OC)1
If 5 €C, then G = <60> o (FxF) o <6>= EL(H x 6(3) ¢ dec -
1

6,C
and (OC)Z’
also G = <> o (3x3) 0 <657 = 6@) x 67'@) € (0 o). Thus

~1 ~ -~ -1 ~ 4
GU G =F"x F° ¢ o@’c V(OG’C) = “@,C ,and so ¥7 €C , and (OC)1 is
satisfied. Finally, assume § < & and & < ¥. Then, by Proposition 2.5, ¥ x &
and & x & are in OSC . Thus (FN&) x (FN&) € Se.c ° and this filter,
being symmetric, is also in “@C . Since He c is compatible with C ,
IJndecC. |

THEOREM 2.9. Let (X,6,C) be a poset with Cauchy structure. Then
(X,6,C) is an o.c.s. iff Conditions (OC)l, (OCZ)’ and (OC)3 are satisfied.

PROOF. In view of Propositions 2.6, 2.7, and 2.8, it remains only to show
that C is compatible with “O,C when the three conditions are satisfied. 1In
other words, we must show that } x § € 0(9, c implies ¥ € C . We prove this
implication first under the assumption that H 1is a free filter; later, this
restriction will be removed.

If 4 x Y € OG,C , then by Proposition 2.5 there are filters 31,..., sn and

jl,...,Jn in ¢, with :5j < :}j for 1 =j=n, suchthat ¥ x ¥ > G =

-1
n{ s (3j) x 6( .&J.): j=1l,...,n}) N <> If X is an ultrafilter finer than
¥, then either <6> C X x X , contrary to our assumption that ¥ is free, or else
there is an index j, 1 = j < n , such that S_l( Gj) X @(ﬁj) c ¥ x X. In the
latter case we see easily that $j < 5j’ and Jj < .&j; thus by (OC)l and (0C)2,
.= (% N&) €ecC.
71(J ( j J)
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Without loss of generality, let {l,...,m} (m < n) be the indices for which,

if j € {1,...,m}, there is an ultrafilter ¥ finer than M such that

G-l( 3].) X (9($j) CXx X. Foreachij, 1=j=mlet M =(F N ﬁj)“; as in
the preceding paragraph, W% € C. We next show that W?=ﬂ{mj : j=1,..., m} € C.
Indeed, suppose j, k € {1,...,m}. Then there are ultrafilters xj and ¥ finer
than Y3 such that 77(3. < )(J. and 7I(k < )fk Since X, x )Ck > G, it follows that
either ( J\j x ){k) U < 6> exists, or else (}(j x )(k) u [8-1(32) x G(Jl)]
exists for some £ € {1,...,n}, where 31 < .&2. Either alternative leads to the
conclusion that mj < mk,' Applying the same reasoning with indices reversed leads
to conclusion 7"5 < mk’ and by (OC)Z’ 77(j n mk € C. Since j and k are
arbitrary indices in {l,...,m}, 7 € C . Since? C ¥ , we conclude that ¥ €C
when ¥ 1is a free filter in O

6, °
If 4 x ¥ € o@ ¢ is not free, then by (OC)3) H 1s necessarily of the form
¥ = ul N %x , where ’ Hl is free and x € X. By our previous results, Hl €C.

Also, G C } x4 , where G 1is the filter described earlier in the proof. Thus
GCkx 1, imlies <0>U Gix¥) exists or (o'l(sj) X ©(5))UG x )
exists for some j, 1 = j < n. Either way, it follows that x < Hl . Starting with
Gc 341 x x leads to the conclusion that 3‘1 < X . Using (oc)2 again, we con-

clude that ¥ = M, N x €c, and the proof is complete. |

The threce conditions which characterize ordered Cauchy spaces are all quite
natural. The properties "locally convex" and "Tz-ordered" are commonly assumed in
the study of ordered topological and convergence spaces, and the condition (OC)2
is a natural extension to ordered spaces of axiom (C3) of Definition 1.2. Cauchy
structures intrinsic to distributive lattices and lattice ordered groups studied by
Ball ([1], [2]) are examples of ordered convergence structures.

Since Cauchy structures are primarily used as a means for constructing com-
pletions and compactifications, it is natural to turn our attention now to
completions of ordered Cauchy spaces. While it is well known that all '1'2 Cauchy
spaces have T2 completions (indeed, a variety of different completions are described
in the literature), it turns out that not all ordered Cauchy spaces have ordered
Cauchy completions. In the remainder of this paper, we characterize those ordered

Cauchy spaces which do have such completions, and examine several special cases.

3. ORDERED CAUCHY COMPLETIONS.
A triple (X, 6, C) will be called a poset with Tz—ordered Cauchy structure

if (X, 6) is a poset and C a T,-ordered Cauchy structure on (X, 8). Thus a

poset with T2 ordered Cauchy struiture is required to satisfy condition (OC)3 but
not (OC)1 or (OC)Z' An increasing, Cauchy-continuous function from one such space
to another will be called a morphism. The category having posets with Tz-ordered
Cauchy structures as objects and morphisms as maps will be designated PCS. Let
OCS be the full subcategory of PCS whose objects are the ordered Cauchy spaces.

If (X, 6, C) € PCS, let GOC be the Cauchy structure compatible with the
uniform convergence structure ”@,c =0 6,C \Y GG,C—I' It follows from
Proposition 2.7 that (X, 6, 6C) 1is Tz-ordered. Furthermore, u 6,C =M 6,6C" and

so by Proposition 2.6, (X, 6, 6 is an o.c.s. We shall call 6C The ordered
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Cauchy modification of C relative to (X,6). If f: (X,6,C) > (X, Gl, Cp is
a map in PCS, then it is a simple matter to verify that £:(X, 6, @C)-»(xl, @1, Slcl)

is also a morphism.
PROPOSITION 3.1. OCS is a reflective subcategory of PCS relative to the
reflector F: PCS - OCS defined for objects by F(X,6,C) = (X, 6,6C) and fixed

on maps.

If an object (X,6,C) in PCS is complete, then we shall refer to C as a

convergence structure on X and (X,C) as a convergence space. For complete

objects in OCS, the Tz-ordered property means simply that 6 is closed in the
product convergence on X x X. A complete o.c.s. will be called an ordered

convergence space; the latter term has the same meaning as "T2—ordered convergence

ordered space" in [8]. Let OCON be the full subcategory of OCS whose objects are

ordered convergence spaces.

DEFINITION 3.2. An ordered completion ((Xl, @1, cl)’ ¢) of an o.c.s.
(X,6,C) 1is a complete o.c.s. (Xl, (‘91, Cl) and a morphism ¢:(X, 6, C) >
- (Xl, 01, cl) which is an ordered Cauchy embedding (meaning that ¢ and tp_l are

one-to-one morphisms and ¢(X) is dense in Xl)'

1f (Xl, @1, cl)’ ¢) 1is an ordered completion of (X, 6, C), then
((Xl’ cl)’ ¢) is obviously a Cauchy completion of (X, C), and so it will be con-

venient to review some aspects of Cauchy completions. Starting with a T, Cauchy

space (X, C), two filters ¥, & in C are equivalent if F N & € C. Iz.et

X* = {[F]: F € C} be the set of all Cauchy equivalence classes; let j: X + X* be
the natural injection, defined by j(x) = [;:] The completion ((Xl’ Cl), ¢) 1is in
standard form if X1 = X* and ¢ = j. Reed [10] showed that every Cauchy completion
is equivalent (in the usual sense) to one in standard form. The same is, of course,
true for ordered completioms.

The main goal of this section is to determine which objects in OCS have ordered
completions; the full subcategory of OCS determined by these will be denoted by
COCS. It is clear that (X, 6, C) € COCS iff (X, 6, C) 1is isomorphic to a Cauchy
subspace of an object in OCON; we seek, however, an internal characterization of
such objects. For this purpose, it is necessary to introduce a new order relation
on the Cauchy filters of an o.c.s.

Let (X, 6 C) be an o.c.s. For F € C, let Lo={x €X: x< ¥} and
Uz = {x €X: 3 <x). Note that if 3Ny € C, then Ly = 6l(y) and Ug =60
Now, for F,& €C , define F €4 1ff any one of the following is true:
F < b or Fv< L}> exists, or SV < U$> exists. Let @ be the smallest
transitive subset of Cx C containing € . In other words, J @ & 1ff there are
Hpseees un in C such that § ¢ Hl,..., lin € 4. Note that 31 n 32 € C implies
% @ 3, and 3, < 3, ; also, if F < & then 3 @.&1 for every
3, € [¥] and $, € [#]. Before proceeding further, we give an example to
illustrate the difference between the relations < and @ .

EXAMPLE 3.3. Let X = R2 - {(0,0)} be the Euclidean plane with the usual

order and with the origin deleted. Let N(x) be the neighborhood filter at x with

respect to the usual topology. Let & be the filter on

- X generated by all sets of
the form C, = {(x,0): 0 < x<;1-} for n €N,

and let ¥ be generated by all
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sets of the form Hn = {(0,y): 0<y< % }. Let C be the smallest Cauchy
structure on X which contains P(x) for each x in X along with & and ¥. It
is easy to verify that (X, 6, C) 1is an o.c.s.; also note that & i H and ¥ f 4.
However I'g, and Uli both consist of the closed first quadrant (excluding, of
course, the origin), and consequently ..9@)1 and ¥ ©$. 1

We now introduce three conditions which are analogous to (OC)I, (0C)2, and
(OC)3; we shall show that an o.c.s. (X, 6, C) has an ordered completion iff it
satisfies these new conditionms.

(COC), F€ ¢ implies (O(M N<Uz>) U (6 (HN<Lg> €C

(coc), 3F,d ¢ c,:;@k and 3@5 implies ¥ N 4 ¢ C

(coc) x @5: implies x <y.

Let (X, 06,C) be an o.c.s., and define the preorder 6% on X* as
follows: 6* = {([F], [&]) : 3@.9}. If (X,6,C) satisfies (COC),, then Ok
is a partial order on X*; if, in addition, (COC)3 is satisfied, then j: (X,06)
> (X*, g*) 1s an order-embedding.

PROPOSITION 3.4. If (X*, @1, Cl), j) 1s a completion of (X, 6,C) in
standard form, then 6%* C 6;-

PROOF. First, let & = {([F], [#De€ x* x X*: F <& }. 1f ([F], e &,
then F < 4, and there are lil,..., Hn in C such that 6(F) U 311,...,9( )in)U$
all exist. Thus F x "1""’“n x & all have traces on 6 . Furthermore,
jtH, i( ul),..., j&) are all in Cps and consequently
({21, [“1])""’ ([Hn], [£#]) are all in @1. By transitivity, ([&F], [&]) € Gl’
and so @ ¢ 6+

The proof is concluded by observing that if F U < Lg > or & U< UZF >
exists, then ([F], [#]) is in the closure of & . Since @

transitive, ([F], [2]) € ©* implies ([F], [8]) € 6- 1

1 is both closed and

PROPOSITION 3.5. If (X, 6, C) has an ordered Cauchy completion, then
(X, & C) satisfies (COC);, (COC),, and (COC),. '

PROOF. Assume that (X, ¢, ¢) has an ordered Cauchy completion
((X*, 6y» Cl), i).

(COC)2 If ¥, 4% € C,¥ % &, and 3@3 » then it follows by

Proposition 3.4 that ([F], [&])¢€ 6 and (141, (3D € 6 3 since 6 1isa
partial order, (3] = [&].

(COC)3 If x @ }.r , then ([;(], [).r]) € 6 and so (x,y) € ¢ .

(coc); By Proposition 3.4, & G(M N [F) ¢ ¢ G@® n [5).

A direct argument shows that j_l( GG N [F)) = o® N <uv
. . -1 . .
6,G@ N [shH U 6, G@® N [3]) € C,» and consequently

3>. But

@ N<u »Uu(e' @<L >ec. |

&
It was shown that the o.c.s. (X, 6,C) of Example 3.3 fails to satisfy
(COC)Z, and thus we see that COCS is a proper subcategory of 0CS .
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We next show that the conditions (COC)l, (COC)Z, and (COC)3 are also sufficient
for the existence of an ordered completion. First, recall Wyler's completion
((X*, Cw), j) of an arbitrary T2 Cauchy space (X, C), defined by cll) =
{33 N [3]: FeC).

THEOREM 3.6. Let (X,6,C) satisfy (COC)I, (COC)Z, and (COC)3. Then
(X*, o*, *,*cu’) is an ordered completion of (X, 6,C). If £f:(X,6,C) ~»
(Xl, 6, Cl) is a morphism and (Xl’ @1, ('_'1) € OCON, then there is a unique
morphism f*: (X*, 6%, Gk Cy) + (Xl, @l, Cl) such that f = f* o j.

PROOF. We have previously observed that conditions (COC)2 and (COC)3
guarantee that j: (X,6) > (X*, 6*) is an order embedding. It is also clear
that j : (X, C) » (X%, 6% Cm) is Cauchy-continuous, and that j(X) 1is dense in
X*. The fact that j-l is also Cauchy-continuous follows from (COC)1 and the
result (used also in the preceding proof) that 6(F) n < Ug > = j-l(G* G@mn [if]))
(along with the dual equality).

Given a function f as specified, let f* be the natural extension defined
by £*([3F]) = Vg » where £(H N ).'36 C,. Then f*: (X%, C’UJ) - (Xl’ Cl) is
Cauchy-continuous by the well-known extension properties of Wyler's completion
(see [5]), and f*: (X*, G*CUJ) - (xl’cl) is Cauchy-continuous by Proposition 3.1.
To show that f* is increasing, we first note that 3@3‘ in C implies
£(3) f(&) 1in Cl. Since Cl is complete, we have also that f(%) < f(4),
and it follows from Proposition 1.2, [8] that f*([F]) = Ve () = Yedy = £x([4]). §

Henceforth, the ordered completion of (X, 6,C) defined in Theorem 3.6 will
be denoted by (X*, &%, C*) rather than (X¥, &%, G*Cm).

Following [4], we define an ordered completion ((X*, Gl’ Cl)’ j) to be
order-strict if, for any ordered completion ((X*, @2, C2), j) 1in standard form,
®1 < (92. From Proposition 3.4, it follows that the ordered completion of

Theorem 3.6 is order strict.
COROLLARY 3.7. For an o.c.s. (X, 6, C), the following statements are

equivalent.

(1) (X, 6, C) € cocs

(2) (X, 0, C) satisfies conditions (COC),, (COC),, and (COC),.
(3) (X, 6, C) has an order-strict ordered completion.

(4) (X*, 6%, C*) is an ordered completion of (X, 6, C).

Without repeating the relevant definitions here, we remark that, in the
terminology of [5], the functor K: COCS - OCON, defined by K(X, 6, C) =

(X*, @*, C*) 1is an order-strict completion functor, and consequently that COCS is

a completion subcategory of OCS. We shall henceforth refer to ((X*, &%, Cx), j)

as the fine ordered completion of (X, 6, C), and K will be called the fine

ordered completion functor.

4. UNIFORMIZABLE ORDERED CAUCHY SPACES.
Let (X, G, U) be a poset (X, 6) equipped with a T

) uniformity %. Then

(X, 6,U) 1is a uniform ordered space (Nachbin, [9]) if there is a quasiuniformity
8§ on X such that Y =8 U S_l and 6 = N §; such a quasiuniformity is said to

determine (X, 6, %). The set of Y - Cauchy filters is denoted by (‘u .
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PROPOSITION 4.1. Let (X, ®,%U) be a uniform ordered space determined by a

quasiuniformity 8 . Then the following conditions hold.
a -1

(UOC)1 If & ¢ Cu, then S(F) U 8§ (&) ¢ Cu

(uoc), 1If F, & € C, S(3 €4, and § (&

In

¥, then F N }6("1‘.

(C), If SG) <y, them xSy.

PROOF. (UOC), € ci,ﬁ Fx Fo>U=> 8. (FxF). 83_§1-u~s=-ls.
But S - (FxF) + 8= & (® x 8(F >8 . Likewise, S(FH x 8§ (I > §,
and so (S@ U s1@®) x (3@ U sE@ 2(8(H x st@n u
('@ x s@ > su stauy.

(UOC)2 Fx3F 28 and Lxd 28 = (FxTF)+-8-(éxd)-=
(Fx8(P) *+ (&x&)>8 = Fxb 28, sinced > 8(F. Similarly,
4x3% 28 ,andso F x &>8U slay . This implies that ¥ N & €q, .-

(V0C); S Cy=xxy2 8=(x,y) €N §=xsy. 1|

THEOREM 4.2. If (X, 6,%) 1s a uniform ordered space, then (X, @,%) is

an o.c.s.
PROOF. Let 8 be a quasiuniformity on X that determines (X, 6,U). Let

F < & in Cu. Then, by Proposition 2.5, & x & € OG:CU . Clearly S8 generates
a quasiuniform convergence structure coarser than O@, c‘u, and therefore

¥ x4>8. Thus 8(F) c$. Conditions (UOC), and “(UOC), thus imply
conditions (OC)2 and (00)3, respectively. But (OC)I follows from (UOC)1 and the

fact that § ¢ <6> . Thus (X, 6, ('74) is an o.c.s. by Theorem 2.9. |

An o.c.s. (X, 6, C) is uniformizable if there is a T
(X, 6, %) such that C = cu .

2 uniform ordered space

THEOREM 4.3. Each uniformizable o.c.s. has an ordered completion.

PROOF. Let (X, 6, C) be a uniformizable o.c.s., and let (X, 6,U) be a
compatible uniform ordered space; let S8 be a quasi-uniformity which determines
X, 6,%Y). Let F €C and x €U
preceding proof that §(JF) ¢ ;c, and consequently S(¥) ¢ < U;; > . Also
$ (3 ¢ 63, and therefore S(F) ¢ O(F) N < Uy > . similarly,

5 - Then F< x , and it follows from the

g_l(g) c (9—1(3) N <Lg>. Thus (COC)I follows from (UOC)I. A straight-
forward argument shows that 8(F) C & whenever F < &, and so (coc), and (COC)3
follow from (UOC)2 and (UOC)3, respectively. The conclusion follows by
Theorem 3.6. |

It is natural to ask whether the fine completion functor K, when restricted
to uniformizable o.c.s.'s, preserves uniformizability. As the next example shows,
the answer is no. The same example shows that the fine completion preserves

neither regularity nor total boundedness.

EXAMPLE 4.4. Let E be the Euclidean plane with the usual topology and
partial order: GE = {(a,b), (c,d)): a=rc and b = d}. Note that the elements in E
are @E-related iff they lie on the same vertical line. Let Y = U{Ln: n € N} U
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{(0,0)}, where L = {(i3 y): 0=y =< % }; let (Y, 6',8') be the compact, T,-
ordered topological space (considered as an object in OCON) with order and topology
inherited from E. Let S = {q%, i-) : n € N} and let X = Y-S. The order and
Cauchy structures which X inherits from Y are denoted by 6 and 8 , respec-
tively. Since (Y, 6', 8') 1is a compact, Tz—ordered completion of (X, 0,8),
(X, 6,8) is a uniformizable o.c.s.

Now consider the fine completion ((X*, 6%, 8%), j) of (X, 6,8). There is
an obvious correspondence between the sets X* and Y relative to which the
equivalence classes of non-convergent filters in X* correspond tc the subset S
of Y. Let & be the Frechet filter on Y of the sequence (%-, % ), and let G
be the corresponding filter on X*. Although & converges to (0,0) in (Y, 8"),

G is non-convergent relative to (X*, 8%), If p € X* is the equivalence class

of filters converging in (X, 8) to the origin, then the closure of the
p-neighborhood filter in (X*, 8%) is nonconvergent, and so (X*, 8*) is not

regular, and consequently not uniformizable.

From the fact that (Y, 6', ®') 1is compact, it also follows that (X, 6, §)
is totally bounded (meaning that every ultrafilter on X 1is in 8 ). Since no
ultrafilter finer than G converges in (X*, 8%*), we see that total boundedness is
not preserved by the fine completion functor.

Although no definition of "regularity'" has been given for ordered Cauchy
spaces, the space (X, 6, 8) as an ordered Cauchy subspace of a Tz-ordered, compact
topological space, would be "regular" by any reasonable definition of that term.
Since (X*, G*, 8#) 1is not regular (in the usual convergence space sense) no

reasonable notion of regularity is preserved by the fine completion functor.

5. TOTALLY ORDERED CAUCHY SPACES.

We begin with a simple condition which is sufficient for the existence of an

ordered completion of an o.c.s.

DEFINITION 5.1. An o.c.s. (X, 6, C) satisfies Condition (A) if, whenever
F €C 1is nonconvergent, there is 51 € [3] such that G-l( 31) € <Lz > and
6(F) c<Ug>.

PROPOSITION 5.2. If (X, 6, C) 1is an o.c.s. which satisfies Condition (A),
then:

(1) The relations (:) and < on C coincide.

(2) (coc), = (0C);

(3) (COC)2 bt (OC)2

(4) (COC)3 d (00)3

(5) (X, 6, C) has an ordered completion.

PROOF. (1) Suppose JF U < y& > exists. If & converges to y, then
Lg = @-l(y), and ¥ < 4 follows immediately. If & is nonconvergent,
Condition (A) guarantees that ¥ U G—loﬁ) exists, and so F < & . Similar
reasoning shows that ¥ < 4 whenever & U < Ug > exists. T;us it is clear that
F (3) 4 implies ¥ < % . The converse is always true.

Statements (2), (3), (4), and (5) are easy corollaries of (1). |}
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Note that if (X, 6, C) is an o.c.s. satisfying Condition (A), then
6% = {([F], [&]) € x* x X*: JF 53}.

The term totally ordered Cauchy space (abbreviated t.o.c.s.) will be used

for any o.c.s. (X, 6,C) for which & is a total order.

PROPOSITION 5.3. If & and & are filters on a totally ordered set (X, 6),

then either 6 (F) U & exists, or (9.1(3) U % exists.
PROOF. If both fail to exist, there is F € ¥ and G € & such that

G(F) N G =¢ and G—I(F) N G = ¢, which means that (O(F) U G-I(F)) neG=o.
Since F is nonempty, O(F) U G‘I(F) =X, and XN G=¢ 1is impossible. |}

COROLLARY 5.4. Let (X, 6, ¢) be a t.o.c.s. and %,& € C. If ¥ < &,
then either 6(%) UJ exists, or else ¥ € [4].

PROOF. If G(F) U& fails to exist, then ©(&) UJF exists, and so
4 <F. But ¥ <& is assumed, so by (0C),, Fe[&]. B

PROPOSITION 5.5. A t.o.c.s. satisfies Condition (A).

PROOF. Let (X, 6,C) be a t.o.c.s., and let F € C be nonconvergent. If
x €L, then x < F, and since F ¢ [x], O6(x) U JF exists, which implies
G_l(.:';'-) i:_).( . Th;s S—I(S) c< L3 > . This, along with the dual argument, proves
Condition (A). |

COROLLARY 5.6. Every t.o.c.s. (X, 6,C) has an ordered completion, and
every ordered completion of (X,6,C) is totally ordered.

PROOF. The existence of an ordered completion follows immediately from
Proposition 5.2 and 5.5. The completion (X*, 6%, C*) 1is totally ordered by
Proposition 5.3 and the remark following Proposition 5.2. Since the total order
6* is the smallest allowable order for an ordered completion in standard form, it

is the only possible order for an ordered completion in standard form. []

6. AN ORDERED COMPACTIFICATION.

Every Tz-ordered compactification of an ordered topological or convergence
space can be regarded as the completion of a certain totally bounded o.c.s., and so
the entire subject of Tz-ordered compactifications lies within the scope of our
present investigation. Our immediate goal, however, is rather modest; we shall
formulate the ordered convergence compactification constructed in [8] as an
ordered Cauchy space completion, thereby gaining some further insight into its
properties.

Let (X, 6, ») be an ordered convergence space (i.e., an object in OCON);
the notation "J¥ - x" indicates that F converges to x in this space. Let c”
be the complete Cauchy structure on X consisting of all convergent filters
relative to > , and (following [8]) let X' be the set of all nonconvergent,
maximal convex filters on (X, 6, »). In [8]{ an ordered convergence space
(X, 6, ») is defined to be strongly Tz—ordered, if the following property and its
dual are satisfied: If % > x, &€ X—'_—am) Ué exists, G_I(Jv) < X .

With each ordered convergence space (X, &, ), we associate the Cauchy
structure § = c‘» U{Fe€FX): there is & € X' such that G C F }. Note that

® 1is the finest Cauchy structure compatible with - which is both totally
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bounded and locally convex relative to 6 .

A Cauchy completion of (X,8 ) 1in standard form is constructed as follows.
If AcX, let A=3(X) U{[F] €¢X*: F€X and A €F}. If T ¢ F(X), let F be
the filter on X* generated by {F: F € F}. Let & = { G € F(X*): there is
F ¢85 such that § ¢ G }.

PROPOSITION 6.1. [8] For any ordered convergence space (X, 6, »), (X*,§ )

is a T2 compactification of (X, ).

PROPOSITION 6.2. A convergence ordered space (X, 6, - ) is strongly

’I‘z-ordercd iff (X, 6,8) is an o.c.s. which satisfies Condition (A).

PROOF. If (X, 6, 8) is an o.c.s., then (X, 6, »), which is its associated
convergence space, is clearly an ordered convergence space. It is also clear that
Condition (A) applied to (X, 6, 8) implies the strongly Tz-ordered property for
(X, 6, »).

Conversely, assume & < & relative to (X, 6, 8), where %, & are both
convex, and either which is non-convergent is assumed to be maximal convex. A
straightforward argument based on the strongly Tz-ordered property leads to exactly
one of the following conclusions:

(1) There are x, y € X such that & » x, & >y, and (9(;:) E;' .

(2) There 1s x € X such that ¥+ x, & is nonconvergent, and G().() <

(3) There is y € X such that &+ y, ¥ is nonconvergent, and 6 (4) C vy .

(4) Both F and & are nonconvergent, and 6 (&) S$ .

With the help of these results, conditions (OC)I’ (OC)Z, and (OC)3 are easily
verified, and so (X, 6,8 ) is an o.c.s. Finally, %f ¥ €8 is nonconvergent, 31
is the maximal convex filter coarser than ¥, and x < ¥, then statement (2) above
gives the result @(;c) < 31, or equivalently :.cg 0—1(8), which implies

< L3> 2 §1(31). This, along with the dual argument establishes Condition (A). |

Combining the preceding results and Proposition 2.8, [8], we obtain:

THEOREM 6.3. If an ordered convergence space (X, &, ») is strongly
Tz-ordered, then ((X*, 6*, 8 ), j) 1is an order-strict, Tz-ordered compactification
of (X, 6, »).

Under the assumptions of Theorem 6.3, (X, &, ») also has an extension of the
form (X*, 6%, 8* ), which is the fine completion of (X, 6, 8). From Theorem 3.6,
it follows that §* is finer than § . If "8* is totally bounded, then

(X*, 6*, 8*) 1is also a compactification, and indeed 8% = § in this case.

PROPOSITION 6.4. Under the assumptions of Theorem 6.3, (X*, &%, 8%), j) is
the largest T2-ordered compactification of (X, 6, ») iff 8* is totally
bounded. When this happens, (X*, 6%, 9§* ), j) coincides with the compactification
(X*, 6*, § ) of (X, ®, ») constructed in [8].

It is shown in [8] that, under the assumptions of Theorem 6.3, (X*, 6%, § )
is the largest '"relatively regular" T,-ordered compactification of (X, 6, »).
There is not, in general, a largest TZ—ordered compactification of a strongly

Tz-ordered convergence space as the concluding example shows.
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EXAMPLE 6.5. This example is based on Example 4.4, and the same definitions
and notation will be used here. Let (X, 6, *) be the Tz—ordered topological
space compatible with (X, 6,8); in other words, > is the relativization to X of
the usual topology on E. It turns out that 8 is the finest locally convex
totally bounded Cauchy structure on X compatible with (X, 6, »). The compac-
tification (X*, 6%, § ) is equivalent to the compactification (Y, 6', 8'),
while the fine completion (X*, G*, 8%) of (X, 6,8) 1is not totally bounded.
Thus, in general, §* and § are distinct. There is no largest Tz—ordered
compactification of (X, &, »). Indeed, suppose C" is the complete Cauchy
structure on Y which agrees with C', except that the filter & and all finer
filters are assigned to converge to (1,0) instead of (0,0). Then (Y, 6',C")
is a Tz—ordered compactification of (X, 6, ) which is neither larger nor smaller
than (Y', 6', C").

By altering the order structure in the preceding example, one can get quite
different results. Suppose (X, @1, +) 1is obtained by leaving X and -~
unchanged, but replacing 6 by Gl’ the usual order of the Euclidean plane. It

turns out that (X, @1, +) 1is strongly T -ordered and that 8 is again the finest

2
compatible totally bounded locally convex Cauchy structure. In this case the fine
completion (X*, GT, 8*) of (X, Gl,@ ) 1is totally bounded. Thus, by

Proposition 6.4, (X%, @?, 8%*) coincides with the compactification constructed in

[8], and is the largest T, -ordered compactification of (X, @l, +).

2
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