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1. INTRODUCTION.

The classical Banach contraction mapping principle can be simply stated as
follows:

Let (X,d) be a complete metric space, and let T:X - X. Suppose there

exists a constant k, O 2 k < 1, such that
a(Tx,Ty) = k da(x,y)

for all x,y € X. Then T has a unique fixed point. It is well known that this
principle is central to many existence proofs in mathematical analysis. Since its
publication, much work has been done to generalize this result by allowing X to
be a more general type of space than the metric space or by relaxing the estimate
d(Tx,Ty) = k d(x,y). In one of his papers [1], Wong introduced the concept of
local iterative contraction. His idea was based on the observation that the

inequality d(Tx,Ty) = k d(x,y) can be expressed as
a(Tx,Ty) = ¢(alx,y))

if one defines ¢:[0,») > [0,2) by ¢(t) = kt. Of course, one can then generalize
Banach's result by replacing the function ¢(t) = kt with some more general type
of function.

On the other h-nd, Kasahara [2] proved, in 1968, the Banach contraction
principle for premetric spaces. Roughly speaking, a premetric space is different

from a metric space by not having the symmetry property and the property that
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d(x,y) >0 if x # y. Kasahara demonstrated in his paper that there exists a
close connection between the premetric spaces and a certain class of subsets of a
topological vector space (see next section). As a consequence, he showed that his
result implied a fixed point theorem by Dubinsky for topological vector space.

In this paper, we take ¢ to be a monotone increasing function such that the
veries I ¢k(t) of its iterations converges for all t > O . This characterization
+f ¢ allows us to prove that certain mappings defined on a premetric space have
the fixed point property. We introduce, in Section 2, the notion of locally
iteratively ¢-contractive mappings, and prove that they have fixed points. The
~.pplication of this result to mappings defined on a topological space is also
contained in that section. In Section 3, we study the sequentially ¢-contractive
nappings on a premetric space. This concept has its origin from a paper by Yun [3].
!n his manuscript, Yun introduced the notion of geometric mean contraction for a
sequence of mappings defined on a metric space, and stated: any sequential
mapping with geometric mean contraction of a complete non-empty metric space M
into M has a unique fixed point in M . This theorem in its present form,
nowever, is incorrect, and we have shown a modified version follows from our
Theorem 3.1.

2. LOCALLY ITERATIVELY CONTRACTIVE MAPPINGS.

Let X be a non-empty set, let D be a subset of X X X, and let d be a
non-negative real-valued function defined on D. The triple (X,D,d) 1is called a
vremetric space if the following two conditions are satisfied:

i, for all x e X, (x,x) € D and d(x,x) = 0.

ii. if (x,y),(y,z) € D, then (x,z) € D and d(x,z) = d(x,y) + d(y,z).
For convenience, we denote the set of all positive integers by N. A sequence
{xn} in X 1is r-convergent (right-convergent) to x €X if (x,xn) € D for all
ne N and d(x,xn) >0 as n -+ ., A premetric space is r-separated if the limit
of every r-convergent sequence is unique. A sequence {xn} in X 1is a r-Cauchy
sequence if for all £¢,me N with £ = m, (xe,xm) € D and d(xe,xm) +0 as
m~> o ., A premetric space is r-complete if every r-Cauchy sequence in X is
r-convergent to some point in X . Similarly, one can define £é-convergent
sequences, £-Cauchy sequences, etc.: for example, a sequence {xn} in X is
g-convergent to x € X if (xn,x) € D for all n € N and d(xn,x) + 0 as
n-> ., By letting X = [0,2), D= {(x,x): xe X} U {(1,x): 0 = x £ 1}, and
d(x,y) = |x-y|, we see that the sequence {1 - %} is r-convergent to 1 but it
is not r-Cauchy. Thus, in a premetric space, not every r-convergent sequence is
a r-Cauchy sequence. Next let X Dbe any non-empty set and let D = X x X. If
we let d = 0, then every sequence in X 1is r-convergent but the limit is not
unique.

In an early paper by Kasahara [2], the author provided an interesting example

of a premetric space which illustrated the close connection between the premetric
spaces and the topological vector spaces. We shall describe this example here.

Let B be a non-empty, bounded, star-shaped (i.e., AB ¢ B for all 0z A 2 1),
convex subset of a iiuusdorff topological vector space L. Let D be a subset of
£ x & such that (x,y) € D if and only if x-y € AB for some real A > O .

For each pair (x,y) © D, we define d(x,y) = inf {X > 0: x-y € AB}. Then
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(E,D,d) 1is an r-separated and f-separated premetric space. It is easy to see
that (E,D,d) 1is a premetric space. To show that E 1is r-separated, we
follow Kasahara's argument by first noting that for every neighborhood U of O
in E , there exists a circled neighborhood V (i.e., AV ¢ V for all |A| s 1)
such that V+V ¢ U. Suppose {xn} is a sequence in E which r-converges to x
and y . Take a & > 0 with 6B ¢ V. Then X=X and y-x, belong to 6B for
sufficiently large n . Since V 1is circle, we have x-y = (Xn—x) + (—y+xn)
€ V+V ¢ U. But E is Hausdorff, it follows that x =y.

Let ¢ be a function which maps the non-negative reals into itself such

o
that ¢ is monotone increasing and o(t) = & d>k(t) converges for all

K 0, ° K k-1
t > 0,(¢ (t) converges for all t > 0,(¢ (t) =1t, ¢ (t) = ¢(¢ ~(t)).
DEFINITION 2.1. Let (X,D,d) be a premetric space. A mapping T: X+ X is
said to be iteratively ¢-contractive at z € X if
i. (1,2,72) € D for all m,ne Ny = {0,1,2,...}, and
ii. there exists a positive integer n(z) such that for all (x,y) € D

and (Tn(z)x,Tn(z)y) € D,
1)) 2 slalxy)).

Note that from part (i) of the above definition, we have (Tn(z)x,Tn(z)y) €D
for all x,y € {T'z: n ¢ NO}. Next, we prove

IEMMA 2.1. Let ¢ be given as above. Then ¢(t) <t for all t >0 and ¢
is continuous at 0 with ¢(0) = 0 .

PROOF. Suppose there exists a t > 0 such that ¢(t) =2 t. Since ¢ is
monotone increasing, ¢k(t) =2t >0 for all k € N. Hence, l;m ¢k(t) =t >0

o

which contradicts the fact that I ¢k(t) <o
0
The second part follows easily from the inequality

0z ¢(0) = 1im ¢(t) = lim t .
t>0* t>0*
Before we state our main theorem for this section, we point out that if Y is

a subset of a premetric space (X,D,d), then (Y,D',d') is also a premetric space
with D' =DN (Y x Y) and d'=d|D,.

THEOREM 2.1. Let (X,D,d) be a r-separated premetric space and let T: X + X
be iteratively ¢-contractive at z € X . If X, = {x € X: (T"x,z) € D for all
n e NO} is r-complete, then T has a unique fixed point in X and the

0
successive iterations w = Tuk—l’ u, =z , are r-convergent to the fixed point.

PROOF. Iet § = 7T°(%)

shall show that (Vk} forms a r-Cauchy sequence in X

and define recursively Vo T2y Vi T Svk_l . We

0 * From condition (i)
on T it is clear that v € X, for all k € Ny = {0,1,2,...} and (vm,vn) €D
for all m,n € No. By condition (ii) on T , we have
_ m

d(vm+k’vm) < ¢ (d(vk,vo)), (m,k € NO)

Since

d( 2 dlvy ,v, _ ) + ...+ d(vl,vo)

vk,vo) =

) + ...+ dl(v,,v.)

1°°0
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and ¢ 1is monotone increasing, we obtain

a( ¢™(o(d(Sz,2))

v v =
m+k ? m)

for all m,k € N Using the fact that ¢"(t) > 0 for all t 20 as m~+ ® ,

0
we have shown that {Vm} is a r-Cauchy sequence in XO .
Since X is r-complete, the sequence {vk} is r-convergent to some point

0
x, € X, . It follows from the inequality d(Sx ) = ¢(d(x,,v,.)) for all

0 ¢ %o 0 Vk+1 0%k
k € Ny and the fact that ¢ is continuous at O with $(0) = 0 , the sequence
{vk} is r-convergent to Sx, - Since X is r-separated, SxO =Xy -

Because (T'x.,z) € D and (z,v,) ¢ D for all i,k € N. , we have
i 0 k 0
(T xO’Vk) €D forall i,k € N In particular,

s2) = ¢k(d(Tx0,Z))

o
a(Tx,v. ) = da(1s¥x
0’k

O,
for all k € No. Thus , {vk} is r-convergent to Txo; whence, Tx0 = X5 -
Now suppose there exists another Yo in XO such that Tyo =Yg - Then

A

d(yo,vk) = d(SkyO,Skz) ES (bk(d(yo,z))

which implies that Yo = X%y -
Finally, we will show that the sequence {uk} where Uy =z, 4 =Ty . is

r-convergent to the fixed point x To this end, note that for all ¢ > n(z),

0 *
£ =mn(z) + kK for some m,k € NO . Thus, we have the following inequality:

d(xo,Tez) = d(Smxo,SmTkz) = ¢m(d(xo,'I'kz)).

Let y = max.{d(xo,Tkz) :k =0,1,...,n(z)}. Then d(xo,T&z) z ¢™(y) which shows
that {th} is r-convergent to X, .

As an immediate consequence of Theorem 2.1, we have the following fixed point
theorem in the setting of a topological vector space:

COROLLARY 2.1. Let E be a Hausdorff topological vector space, and let B
be a bounded star-shaped convex subset of E . Let T: E-+ E be a mapping such
that the following two conditions are satisfied:

i. thereexists a z € E such that for all myne N , Tmz-Tnz € AB for
some A 2 O.

ii. there 2xists a positive integer n(z) such that for all x,y, x-y € AB
implies Tn(z)x_Tn(z)
If XO = {x e E: %z € )\nB for some )‘n 2 0 and for all n € N} is
sequentially complete, then T has a unique fixed point in Xo.

3. SEQUENTIAL CONTRACTIVE MAPPINGS.
Let (X,D,d) be a premetric space and let {Ti: i € N} be a sequence of

= TjTi for all i,j € N , then we say this

y € ¢(A\)B where ¢ is given as before.

mappings from X into X. If TiTj

sequence of mappings is commutative. For each positive integer n , we define

'I‘n+l = Tm’l‘l‘n with Tl = Tl . If i is a positive integer less than or equal

to n , by Tn(i), we mean

Tn(i) =T T T T

We shall adopt the convention that Tn(i) =7% if if i>n.
DEFINITION 3.1. A sequence {Ti} is said to be sequentially ¢-contractive
if (x,y) € D implies that
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i. for all i e N, (Tix,Tiy) €D and 4A(T,x,T.¥y) = C;d(x,y), and

ii. for all n,i € N,

¢"(d(x,y)) if i>n
n n
afT . T, =
(T 5y (1)) .
c;9 (alx,y)) if is=n
where C'is are constant and ¢ 1is a function as given in Section 2.
THEOREM 3.1. Let X be a r-separated premetric space, and let {Ti} be a
sequence of commutative, sequentially ¢-contractive mappings. If the set
Y ={y : (Tiy,y) € D for all i € N} is r-complete and if there exists a 2z € Y
S k-1
such that I ¢ (tk) < @ where t

1
then there exists a unique Yo € Y such that Tiyo =Y, for all i € N.

K = d(Tkz,z) and (y,z) e D for all yeY,

PROOF. First, we'll show that {Tnz} is a r-Cauchy sequence in Y. From
the facts (Tnz ,2) « D for all ne N and {Ti} is commutative, it follows that

+
{T"2} belong to Y and (™ 1, ,I%2) € D for all n € N. Using the transitive

property of D , we have, for all m,n € N with m=zn ,

AT, ™2) = a(™™2, 7™ 2) + ... + a(T" 2, 7%)

- am=1 n
z i—l (tm) + ...+ 0 (tn+l)
=5 ot )
k+1
n

which goes to zero as n > ® . Thus, the sequence {T"z} is r-convergent to some
point Yo €Y .

Next, we claim that for each fixed i € N, the sequence {Tn(i)z} is also
a r-Cauchy sequence in Y . Moreover, it r-converges to Yo (It turns out that
the r-Cauchy property is not needed in our proof). It is easy to see that {Tn(i)z}

isin Y . Now let myn € N with m =2n =2 i. We have

)

which shows that {T" i)z} is a r-Cauchy sequence. Since (Tiz ,2) € D, we see

+ +
that (T 1, ,Tr(li%z) € D . Hence,

d(Tm(i)z,Tn(i)z) = C.¢m_l(tm) RPN ¢

i n+l

n+l )

d(yO,T(i)z d(yO,Tn+lz) + d(Tn+lz,T?i+:;'z)

A

n+l n+1
d(yo,T z) + c; ¢

n

(a(1;z,2))
which goes to zero as n + o .
Finally, (yO,Tnz), (Tiyo,yo) € D implies that (Tiyo,’l‘nz) € D and
AT,y,,T2) = ATy, 5 T;)
= Cid(yo,Tn(i)z)

which goes to zero as n + © . Since X is r-separated, we have Tiyo =Y,
for all i € N.
To show Yo is unique, we proceed as follows: suppose there exists another

¥y € Y such that Tiyl =y, for all i . Then (yl,z) € D which implies that

(y,,T%2) = (T, ,1") € D
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aly,,12) = ¢"(aly,,2)).

Hence, {Tnz} is r-convergent to ¥y o and by r-separateness of X , we see that
Yy =Yy

One can obtain an immediate corollary of the above theorem if we first define

DEFINITION 3.2. A sequence {Ti} of self-mappings on a premetric space X is
said to be ¢-contractive if (x,y) € D implies that (Tix,Tiy) € D and
d('I‘ix,Tiy) = ¢(d(x,y)) for all i € N with ¢ as given before.

COROLLARY 3.1. Let {Ti} be a sequence of commutative ¢-contractive self-
mappings defined on a r-separated premetric space X . If the set
Y = {y: (Tiy,y) €D for all i € N} is r-complete and if there exists a z € Y
such that OZO ¢k_1(tk) < ®© where t

1
then there exists a unique ¥g € Y such that Tiy0 =Y for all i e N .

K= d(Tk,z,z) and (y,z) € D for all yeY ,

PROOF. One only needs to observe that {Ti} is also sequentially
¢-contractive with Ci =1 for all i .
In a manuscript by Yun [3], the author introduced the notion of geometrical

mean contraction for a sequence {Ti} of self-mappings defined on a metric space X.

After a careful study of his work, we believe his definition and also the
statement of Theorem 1 in his paper need to be modified. We shall give here our
version.

DEFINITION 3.3. Let (X,d) be a metric space and let {Ti} be a sequence of
self-mappings on X . We say that {Ti} is a sequential mapping with geometric

mean contraction if for each i € N , we have
a(T;x,T;y) = r;dlx,y) (x,y € X)

where ry is a positive constant, and, for all n e N ,

1/n

(rl...rn) <G

where 0 = G <1 is a constant.

Clearly, if X 1is a metric space, then the set Y in Theorem 3.1 is equal
to X . Also, if {Ti} is a sequential mapping with geometric mean contraction,
then {Ti} is sequentially ¢-contractive provided we let C; = max. {ri, ;l.—} and
o(t) =ct,t =z0. *

COROLLARY 3.2. Let X be a complete metric space and let {Ti} be a
commutative sequential mapping with geometric mean contraction. If there exists an
x € X such that the set {d(Tix,x): i € N} is bounded, then {Ti} has a unique
common fixed point.

PROOF. Let b be an upper bound of {d(Tix,x): i € N). Since ¢ is mono-

tone increasing, we have
k- -
¢t ) s ¢7Hw)

where tk = d(Tkx,x). Hence, I cbk_l(tk) < o | and the corollary now follows
easily from Theorem 3.1.

We shall remark here the Corollary 3.2 remains valid if we replace the
requirement that {Ti} be commutative by the following less stringent condition:

™ = 7' for all n € K.
n+

{Ti} is said to be weakly commutative if Tn+ 1

1
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