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ABSTRACT. In recent analysis we have defined and studied holomorphic functions in
tubes in tn which generalize the Hardy HP functions in tubes. 1In this paper we
consider functions f(z), z = x+1iy, which are holomorphic in the tube TC = Rn + icC,
where C is the finite union of open convex cones Cj , J=1,...,m, and which satisfy
the norm growth of our new functions. We prove a holomorphic extension theorem in
which £(z), z € TC,
TO(C) ="+ 10(C), where 0(C) is the convex hull of C, if the distributional boundary

C
values in A;' of f(z) from each connected component T J of TC are equal.

is shown to be extendable to a function which is holomorphic in
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1. INTRODUCTION.

The purpose of this paper is to prove a holomorphic extension theorem (edge of
the wedge theorem) for functions which are holomorphic in a tube in ¢ and which
satisfy a norm growth condition that generalizes the norm growth for HP functions in
tubes. The basis for the analysis presented here is the analysis in our papers
Carmichael [1-2].

We begin by stating some needed definitions. A set C & K" is a cone (with
vertex at the origin 0 = (0,0, ... ,0) in Y if y € C implies Ay € C for all positive
scalars A. A regular cone is an open convex cone C such that C does not contain any
entire straight line. The dual cone C* of a cone C is defined as c* = {t ¢ R™: <t,y> >
0 for all y € C}; c* is always closed and convex (Vladimirov [3, p. 218]). The
intersection of the cone C with the unit sphere in K" is called the projection of C
and is denoted pr(C). The function

u (e) = S (=<t,y>)

1s the indicatrix of the cone C, and we note that C¥ = {t ¢ K": u () < 0}. The set
= ®" + 1C is a tube in £". The convex hull (convex envelope) of a cone C will be

denoted by 0(C), and 0(C) is also a cone. Put C, = Rn \\C*; the number

p_ = Sup UO(C)(t)
C  teCy uc(t)
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characterizes the nonconvexity of the cone C (Vladimirov [3, r. . . Following
Vladimirov [4, p. 930) we say that a cone C & " with interior points has an admissi-
ble set of vectors if there are vectors e € C, Iekl =1, k=1,2,...,n, which form
a basis for Rn; equivalently we say that such a set of n vectors in C is admissible
for the cone C.

Let B denote a proper open subset of K", Let 0 < p<®and A > 0. Let d(y)
denote the distance from y € B to the complement of B in K", The space SP(TB)
(Carmichael (1, pp. 80-81}), TB ="+ iB, is the set of all functions f(z), z =

x+1y € T , which are holomorphic in T and which satisfy

1
[Ex+1p) || = [L [£(x+1y) [P dx /e <
LP n (1.1)

< M (14 d()H exp(2maly]), yeB,

for some constants r 2 0 and s > 0 which can depend on f, p, and A but not ony € B
and for some constant M = M(f,p,A,r,s) which can depend on f, p, A, r, and s but not
ony € B, We defined and studied the functions SP(TB) in Carmichael [1-2]. The
spaces SP(TB) were defined to generalize the HP functions in tubes (Stein and Weiss
[s, Chapter III]) and to contain the previous generalizations of the HP functions of
Vladimirov [6] and Carmichael and Hayashi [7].

We proved in Carmichael [1, Theorem 4.1, p. 92] that if B is a proper open
connected subset of K" then any element £(z) € SK(TB) , 1<p<2, A>20, has a
Fourier-Laplace integral representation for z € TP in terms of a function g(t) which
satisfies certain norm growth properties. In addition we proved in Carmichael [1,
Corollary 4.1, p. 93] that if B = C, an open convex cone in Rn, then f(x+1iy) has a
unique boundary value as y+0, y € C, in the strong topology of x, the space of
tempered distributions.

In this paper we prove a holomorphic extension theorem (edge of the wedge theorem)
for holomorphic functions in TC which satisfy (1.1) for y € C where C is a ftn;.te
o(c

union of open convex cones in Rn; the extended function 1s holomorphic in T where
0(C) 1is the convex hull of C. To obtain our extension theorem we use the information
from Carmichael [1] which is contained in the preceding paragraph.

We proceed to the result of this paper after making the following definition;
the subspace }; of ,x.', 1 < p<=,1is defined to be the set of all measurable
functions g(t), t € Rn, such that there exists a real number b > 0 for which
(@ + [t]M™ g(t)) € P (Carmichael [1, p. 83]).

All subsequent notation and terminology in this paper are that of Carmichael [1-2].

2. HOLOMORPHIC EXTENSION.

Let C be an open cone in R such that C = U Cj where the Cj, j=1,...,m, are

j=1

open convex cones in k" and m is a positive integer. Let f(z) be holomorphic in the
tubular cone ‘I‘ = " 4+ 1C and satisfy (1.1) for y € C and for 1 < p < 2. For ary
y € Cj’ j=1,...,m the distance from y to the boundary of C is larger than or equal
to the distance from y to the boundary of Cj from which it follows that f(z) € SP(T j),
1<p<2,3=1,...,n. Thus by Carmichael [1, Corollary 4.1, p. 93] there exist

rmeasurable functions gj(t) € }; ,» (1/p)+(1/q) =1, with SUPP(gj) C {t: ucj(t) < A}
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almost everywhere such that

C
f(z) = Ln gj(t) exp(2mi<z,t>) dt, z € T j, j=1,...,m, (2.1)
pointwise and
xim '
y0 fx+iy) = Flegle §,3=1,...0m, (2.2)
yeC,

]

in the strong topology of x- with 1[3 ] being the 'x. Fourier transform of

yedie k-

We now state and prove the main result of this paper.

THEOREM. Let C be an open cone in A" which is the union of a finite number of

m
open convex cones, C = U Cj .

j=1
admissible set of vectors. Let f(z), z = x+1iy, be holomorphic in the tubular cone
TC
the strong topology of ,3. corresponding to each connected component Cj' j= ces oM,
of C given in (2.2) be equal in }. Then there is a function F(z) which is holomor-
phic in T 0(C) and which satisfies F(z) = £f(2), z € TC, where F(z) is of the form

0(C)

such that (O(C))* contains interior points and has an

and satisfy (1.1) for y € Cand 1 < p £ 2. Let the boundary values of f(x+1y) in

F(z) = P(z) H(z), z € T

with P(z) being a polynomial in z and H(z) € Sﬁ o (TO(C)) n SqA (TO(C)), (1/p) +
( °c
(1/q) =
1

PROOF. By hypothesis the boundary values in (2.2) above are equal in x .
Since the Fourier transform is a topological isomorphism of ,8' onto 18' we have that
the elements g (t) Ex x (1/p) + (1/q) = =1,...,m, obtained in the
first paragraph of this section satisfy

g1 (1) = gy(t) = ... =g (t) (2.3)

1] 1
in x_ . We call this common value g(t) and have g(t) EXq , (1/p) + (1/q) = 1. Now

ug(t) = 1‘”‘ a Y. (O, te K. (2.4)
;

We have u(£) = ug o (8), t € c*, (Vladimirov [3, p. 219, (54)1); and from the defini-

= g *
tion of OC we have uo(c)(t) < pc uc(t), tecC, R'NNC". Since 1 < < pg < o

(Vladimirov [3, p. 220]) here we have uo(c)(t) < pC uc(t), t € Rn. From (2.4) we now

obtain
max

UG WS A K (2.5)

From (2.3) and the fact that supp(gj) C {t: ucj(t) < A} almost everywhere, j=1, ...,m,
we have that g € } C '8_ vanishes on U {t: u C (t) > A} as a distribution. Now

=1
let t € {t: uO(C)(t) > A DC }; for such a point t we have by (2.5) that

max
< .
A uo(c)(t) <00 4-1,....m qu(t)
and hence
max
>
j=1,...,m qu(t) A
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m
Thus if t € {t: u (t) > Apc} then te€ V {t: ucj(t) > A} and on this latter set g

0(C) M
vanishes. Since {t: uo(c)(t) < Apc} is a closed set in K" we thus have

supp(g) € {t: ug(cy (V) < A o } (2.6)

in & and {t: Uocey (V) < AR} = (0(C)* + N(@3A o) (Vadimirov [4, Lemma 1, p. 936])

with N(O;A pc) being the closure of the open ball in Rn centered at 0 and with radius
A DC . Recall from section 1 that the dual cone (O(C))* is closed and convex and by
hypothesis in this Theorem (0(C))* contains interior points and has an admissible set
1
of vectors. Since g € }; P /x has order 0 then by Vladimirov [4, Theorem 1, p. 930]
n
g(t) = 10 <eys gradient>2 G(t) 2.7)
k=1
where {ek};:=1 is an admissible set of vectors for the cone (O(C))*, G(t) is a con-

tinuous function of t € R which is unique corresponding to {ek}:=1 and the order 0

of g € }; c'x,', supp(G) € {t: uo(c)(t) < ADC}= E))* + N(G;Aoc) , and

)] <k @+ [e]), ter”, (2.8)

where the constant K is independent of t € ) S (In Vladimirov [4, Theorem 1, p. 930]
the term "acute" in our present situation means that ((O(C))*)* = 0(C) (Vladimirov
[3, p. 218]) should have non-empty interior (Vladimirov (4, p. 930]) which is certain-
ly the case in this Theorem.) Since G(t) is continuous on K", then supp(G) e

{t: uo(c)(t) < AOC} as a function (Schwartz [8, Chapter 1, sections 1 and 3]). (This
fact is also obtained in the proof of Vladimirov [4, Theorem 1], and the containment
supp(G) € {t: uo(c)(t) < Apc} which is stated preceding to (2.8) gives the support
of G(t) as a function.) We now choose a function A(t) € Cm, t € Rn, such that for
any n-tuple a of nonnegative integers |DA(t)| < M, te K", where M, is a constant
which depends only on a; and for € > 0, A(t) = 1 for t on an € neighborhood of

{t: uo(c)(t) <A OC} and A(t) = 0 for t € ln but not on a 2€ neighborhood of

{t: uo(c)(t) < AOC} (Carmichael [1, p. 94]). We have that (A(t) exp(2wi<z,t>)) € }.
as a function of t € Rn for z € TO(C). Recalling (2.6) we now put

0(c)

F(z) = Ln g(t) exp(2mi<z,t>) dt = Ln g(t) A(t) exp(2mi<z,t>) dt, z € T (2.9)

From (2.7) and supp(G) € {t: uo(c)(t) < Apc} as a function we have (Vladimirov [4,
(3.1), p. 931])

00y (2.10)

n
F(z) = [H <eys

-2niz>2] H(z), z € T
k=1

where

H(z) = f G(t) exp(2mi<z,t>) dt, z € TO(C)

{t:uo(c)(t)sa oc)

(2.11)

From the continuity of G(t) and (2.8) we easily have G(t) € }; for all p, 1 < p < o
this combined with the support of G(t) as a function and Carmichael {1, Theorem 6.1,
p. 98] yield

(exp(-2mey,e>) 6(£)) € LP, y € 0(0), (2.12)

and
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lexp(-2mey,e) G(0)f| <M+ @D exp(2ma o lyDs v e o0, (2.13)
L

for constants r = r(G,p,A) > 0, s = s(G,p,A) > 0, and M = M(G,p,A,r,s) > 0, which are
independent of y € 0(C), and for all p, 1 < p < . Then (2.12), (2.13), and

Carmichael [1, Theorem 5.1, p. 97] prove H(z) € Szo (10(0)y (1/p) + (1/q) =1,
C

(19(9)).  Then by (2.10), F(z)
c

defined in (2.9) is holomorphic in TO(C), and of course (2.10) is the desired repre-

for all p, 1 < p < 2, and in particular H(z) € Si

sentation of F(z) in the statement of the Theorem where the polynomial P(z) 1s

n 2
P(z) = I <ek, -2miz>
k=1
and H(z) € 2 (12 A st (%O, (1/p) + (1/q) =1, is given in (2.11). By
Apc ADC

(2.3), (2.6), and the definition of A(t) preceding (2.9), we see that (2.1) can be
rewritten as
f(z) = Ln g(t) A(t) exp(2mi<z,t>) dt =

(o
= Ln g(t) exp(2mi<z,t>) dt, z € T j, j=1,...,m.

These identities and (2.9) show that F(z) is the desired holomorphic extension of f(z)
to TO(C) and F(z) = f(z), z € TC. The proof of the Theorem is complete.

We emphasize that cones C exist for which the hypotheses of the Theorem are
satisfied corresponding to C and (O(C))*, and examples are easily constructed. If
0(C) in the Theorem is regular (i.e. if 0(C) does not contain an entire straight line
in this case since 0(C) 1s open and convex) then the interior of (0(C))* is not empty;
the Theorem applies in this case if (O(C))* has an admissible set of vectors.

In the Theorem we have desired to obtain a result in which the holomorphic

extension function could be represented in terms of an Szp (TO(C)) space; this

happens under the assumptions on (0(C))* in the Theorem. Under these assumptions we
were able to conclude that the continuous function G(t) in the representation (2.7)
had pointwise support in {t: uo(c)(t) < Apc }. From this fact we were able to use
Carmichael [1, Theorem 6.1] and then Carmichael [1, Theorem 5.1] to obtain that H(z)
in (2.11) belongs to S: pc (TO(C)), (1/p) + (1/q) = 1, for all p, 1 < p < 2; and hence

the desired representation of the holomorphic extemsion function F(z) was obtained in
(2.10).

From the proof of the Theorem the common value g(t) € };, (1/p) + (1/q) =1,
1< p <2, in (2.3) has supp(g) € {t: uo(c)(t) < Aoc} in‘,' (recall (2.6)). If
supp(g) 1s contained in this set almost everywhere as a function as well then the
restrictions on (O(C))* in the Theorem can be deleted in obtaining a holomorphic
extension result as we show in the following corollary.

COROLLARY 1. Let C be an open cone in R™ which is the union of a finite number
of open convex cones, C = O Cj. Let f(z), z = x+1iy, be holomorphic in the tubular

j=1
cone TC and satisfy (1.1) for y € Cand 1 < p £ 2. Let the boundary values of f(x+1iy)

A}
in the strong topology of } corresponding to each connected component C1.
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j=1,...,m of C given in (2.2) be equal in }' and let this common value g(t) have
support in {t: uo(c)(t) < ADC} almost everywhere (as well as in x_’) . Then there is
a function F(z) which is holomorphic in TO(C) and which satisfies F(z) = f(z), z € TC;

and if p = 2, F(z) € s (10(0)y,
A,

PROOF. Proceeding as in the proof of the Theorem we obtain the common value
A\ A\
g(t) € x'q’ (1/p) + (1/q) = 1, from (2.3) and supp(g) © {t: “O(C)(t) S_Apc} in }. .
By our assumption supp(g) € {t: uo(c)(t) <A oc} almost everywhere; thus by Carmichael
[1, Theorem 6.1, p. 98], g(t) satisfies

(exp(-27<y,t>) g(t)) € LY, y e 0(0), (2.14)
and

| |exp(-2m<y, t>) g(t)]] s ML+ @) DS exp(2ma fc lyl), y e 0o, (2.15)
L

for constants r = r(g,q,A) > 0, s = s(g,q,A) > 0, and M = M(g,q,A,r,s) > 0 which are
independent of y € 0(C). Then by Carmichael [1, Theorem 3.1, pp. 84-85] the function

0(c)

F(z) = Lng(t) exp(2mi<z,t>) dt = Lng(t) A(t) exp(2mi<z,t>) dt, z € T (2.16)

is holomorphic in TO(C) where A(t) € c° is the function defined in the proof of the
Theorem. As in the proof of the Theorem F(z) 1s the desired holomorphic extension of

f(z) to TO(C). If p =2 then q = 2; in this case (2.14), (2.15), and Carmichael [1,
Theorem 5.1, p. 97] yield that F(z) € Sip (TO(C)). The proof is complete.
C

We have a more general holomorphic extension theorem than either the Theorem or
Corollary 1. Here 0(C) is as general as possible and we make no assumption on the
constructed g(t) in (2.3). We lose the explicit information on F(z) being in an

sP (TO(C)) space however.
A DC

COROLLARY 2. Let the open cone C and the function f(z) be as in the hypothesis
of Corollary 1 with 1 < p £ 2. Let the boundary values of f(x+1iy) in the strong
topology of '8,' corresponding to each connected component Cj, ji=1,...,m, of C
given in (2.2) be equal in }'. Then there is a holomorphic function F(z) in 10(C)
such that F(z) = f(z), z € TC.

PROOF. Define F(z), z € TO(C), ?s in (2.16) where g € )—; c }', (1/p) + (1/q) =
1, is the common value in (2.3) in x- and supp(g) € {t:uo(c)(t) < ADC} in },' from

the proof of the Theorem. Then F(z) is holomorphic in TO(C) by the necessity of
Vladimirov [3, Theorem 2, p. 239] and is the desired holomorphic extension of f(z) to
T0(C) pecause of (2.3) and (2.1). (Recall the proof of the Theorem.) The proof is
complete.

Notice from Vliadimirov [3, Theorem 2, p. 239] that F(z) in Corollary 2 does
satisfy a pointwise growth estimate; but we cannot conclude that F(z) is in an

Si 1) (TO(C)) space for any p in Corollary 2.
C
In the Theorem and Corollaries 1 and 2 the holomorphic extension function F(z),

L}
z € T0(C) | 15 defined by (2.9) (i.e. (2.16)) where g(t) € 'x; c }- » (1/p) + (1/q) =1,
and supp(g) € {t: uo(c)(c) <A DC} 1n}:. Since 0(C) is an open convex cone then in
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each of the results we can also conclude that

2im '
0 Fx+iy) = Flel e 4 (2.17)
yeu(C)
Al
in the strong topology of }- by the boundary value proof in Carmichael [1, Corollary
L
4.1, p. 93]; here ‘;[g] is the x, Fourier transform. Further, if 0(C) is a regular

cone, A =0, and p = 2, in Corollary 1 then we can conclude in Corollary 1 that
F(z) = <Flgl, K(z-0)> = < Flgl, Qz; ©)>, z € 19O, (2.18)

in ,8-' by Carmichael [1, Corollary 4.2, p. 94] where ‘£[g] is the boundary value in
(2.17) and K(z-t) and Q(z ; t) are the Cauchy and Poisson kernels (Carmichael [1,

p. 83]), respectively, corresponding to the tube T0(C) , (Recall from the sentence
preceding the statement of Carmichael [1, Corollary 4.2, p. 94] that g 6'8; implies
Flg €ﬁ;2 c }'.)

If the cone C is (0,%®) or (-,0) or (-»,0) \J (0,®) in 1 dimension then of course
d(y) = |y|, y € C, in (1.1). We have the following interesting result in 1 dimension
for C = (-»,0) \J (0, . Note that (0(c))* = {0} here which does not have interior
points; so the following result is like Corollary 2.

COROLLARY 3. Let £(z) be holomorphic in R' + iC, C = (-=,0) \J (0,%), and satisfy
(1.1) for 1 < p < 2. Let the boundary values of f(x+iy) in the strong topology of }.'
from the upper and lower half planes given in (2.2) be equal in }' Then there is an
entire holomorphic function F(z) such that F(z) = f(z), z € Rl + icC.

PROOF. First note that 0(C) = (-»,). Obtain g(t) e}; c }. (1/p) + (1/q) =
1, 1 < p £2, as in Corollary 2 and define

F(z) = Ll g(t) exp(2mi<z,t>) dt = Ll g(t) A(t) exp(2mi<z,t>) dt, z € ¢1, (2.19)

as in (2.16). Here (0(C))* = {0} and supp(g) € {t: Uy (V) < Apc}= oEN* + '
mo—c_) = [-Ap.,A DC]. Thus g ¢ }; has compact support here, and hence g € e .
F(z) in (2.19) is the Fourier-Laplace transform of a distribution of compact support
and hence is an entire holomorphic function in ¢l (Hormander [9, Theorem 1.7.5, p. 20]).
F(z) = £(2), z ¢ Rl + iC, as before.
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