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ABSTRACT. The Legendre numbers, an infinite set of rational numbers, are defined
from the associated Legendre functions and several elementary properties are pre-
sented. A general formula for the Legendre numbers is given. Applications include
summing certain series of Legendre numbers and evaluating certain integrals. Le-
gendre numbers are used to obtain the derivatives of all orders of the Legendre

polynomials at x = 1.
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1. INTRODUCTION.

Many sets of numbers are associated with polynomials. For example, Stirling
numbers of the first and second kinds, Bernoulli numbers, and Euler numbers are
defined from certain polynomials. We follow this pattern by defining the Legendre
numbers from the associated Legendre functions. These Legnedre numbers have many
ﬁroperties and applications and our purpose is to examine some of these.

2. THE LEGENDRE NUMBERS.

The associated Legnedre functions are defined by

m
oo = - DD (), @.1)

where Pn(x) is the nth order Legendre polynomial and m and n are non-negative
integers. Using Rodriques' formula, one ha;
2,2
PP(x) = L= X)° pwn 2 gyn (2.2)
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With these, the legendre numbers can be defined as follows.
Definition 1. The Legendre number, P:, are the values of P:(x) for x = 0.
From (2.1) and the definition, it is clear that
m _ ,(m)
P Pn ), (2.3)

where Pém)(o) is the mth derivation of Pn(x), evaluated at x = 0. From (2.2),
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one sees that

m_ 1 mn 2 _.n
P tmn D G0 =D @9

From (2.4) it is clear that P: =0 for m+ n odd and also for m > n. For
m+n even and m < n, there is exactly one term (2.4) void of x (before taking
x=0) and this term simplifies to the third part of the explicit formula

0, m + n odd

m O, m>n
n-m

(-1) % (ntm)!

zn(n+m),(g:E),’ m+neven, m < n . (2.5)
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This gives all Legendre numbers with m and n non-negative integers. Rainville,

[1], gives all values of P“ = Pg as
PO =1
Pont1 = 0 i1 (2.6)
’ . (-1) (*2-)n
2n n!

which agrees with (2.5) for m = 0.
The following table gives some of the Legendre numbers. Note from (2.5) that all

Legendre numbers are rational.

a ’: Pn-!: r; P: ?; e r: r: r; r: Ve
0 1
1 0 1
2 -% 0 3
3 o -3 15
. % 0 --% 0 105
3 0 5% o - 3%1 0 943
sl-1B o B o .3 o 103
7 o -1 o B L1939 4 a3
¢ | B2 - o Mg, L3I 4 027,005
! e

TABLE 1. LEGENDRE NUMBERS
3. SOME BASIC PROPERTIES.

The following list of simple properties, observable from the table, can be
easily proved using (2.5).

n_ ® JeHeeoe -
Pn = 1+3+5 (2n 1), n > 1. (3.1)
Pm+l

P 2 S

n g , n > 1. (3.2)
m _ m—-1
Pn = (m +n - l)Pn—l , m, n > 1. (3.3)
m -
Pn =-n-m+ 2)(n +m - 1)P: 2, m > 2. (3.4)
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) h+m-1) p" ,n>2, m<n - 2. (3.5)
n n-m n-2 - -

PP=(m+n-D@+m=-3@-m+N@-m+ P _,m>1. (3.6

Equation (3.1) gives the value on the "main" diagonal of the table. Equation (3.2)
gives each entry, except the last, in a row of the table from the entry just above
and to the right, while (3.3) gives each entry from the one just above and to the
left. Equation (3.4) allows one to fill in the entries of a row from left to right.
Equation (3.5) shows the connection between entries in the same column but two rows
apart. Finally, Equation (3.6) gives each Legendre number in terms of a Legendre
number in the first column of the table.
4. EXPANSIONS OF LEGENDRE POLYNOMIALS AND ASSOCIATED LEGENDRE FUNCTIONS.

By Maclaurin's expansion, the Legendre polynomials, Pn(x), can be expressed as
n P[(lm)(O)xm

P (x) = } 4.1)
n =0 m!
Using (2.3), one has
m_m
n an
P (x) = ! (4.2)
m=0
With the table, (4.2) gives a simple way of writing out Pn' For example,
_ 15 105 3 , 63 5
Ps(x) = —Bx - —lzx + —8x , (4.3)
is easily obtained using (4.2) and the entries Pg, for m zero through five, from
the table.
Substituting Pn(x) from (4.2) into (2.1) one has
m m_m
m _ 2,2 m n
P (x)=(Q-x7)"D ) T - (4.4)

m=0
If m and n are not too large, (4.4) is easy to use to obtain P:(x). The
table provides the summation entries and the mth derivative is then evaluated, For

example,
3 P
R (4.5)
m=0

)

a- x2)(P§ + ng)

(1 - x2)(0 + 15%)

15x(1 - xz).
5. SOME SERIES AND AN INTEGRAL INVOLVING LEGENDRE NUMBERS.

Taking x =0 and t =1 in the known generating relation for the Legendre
polynomials, see Rainville, [1],

1
-2 +th) 2= ] Goe”, (5.1)
n=0
gives
- _1
2
20 P =2 R (5.2)
ne

the sum of the non-zero terms in the first column of the table. In (5.1) take k
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derivative with respect to x, then let x =0 and t = 1 to obtain

2k+1
K -5
J P = 1.3:5:7..-(2k - 1)2 . (5.3)
n=k "

This gives the sum of the non-zero terms in the kth column of the table.

A well known series involves the Legendre numbers. Let x =0 in (5.1) to

obtain
I S
2
a+eh F= ] et (5.4)
n= 0
Next, let t = tan 6 for |e| < %— and use the appropriate trigonometric identities
to obtain
_ 2 4 6
cos 6 =P+ P tan"' 6 + P,tan 68 + P _tan 0 +---
0 2 4 6
=1 - 1 tanze + é-ta Ae - -é-tan6e Feee -3
2 g tan 16
where the coefficients in the series are the Legendre numbers, P2n' for n > 0.
Next an integral is evaluated. Using (4.2), one has
1 1 n P™%"
f P_(x)dx = J G (5.6)
0 0mo ™
n 1 P:xm
= X J : dx
w0 Jo ™
1
n [%mxm+%]
Z n
w0 L™ Lo
n Pm
Z n
]
m=0(m+1).
Therefore, for n any non-negative integer, one sees that
Il 3\ Pn
P (x)dx = ) ——=7 . (5.7)
o™ =0 (m+1)!

A better formula for this integral will be obtained in that the summation will be
evaluated. Recall that the Legendre polynomials form an orthogonal set for n a

positive integer. Thus,

28
J P (x)dx =0 . (5.8)
1
For n positive and even,
1 0 1
I_an(x)dx = I_an(x)dx + [0 Pn(x)dx
(5.9)

1
2[ P (x)dx,
o M

since Pn(x) is an even function for n even. The integral and summation in (5.7)
are thus seen to have the value 0 for n positive and even.

More generally,

fl ? P: Pn+1
P_(x)dx = 7 = - R (5.10)
o M m=0(m+1). n

for n any positive integer. Now, (5.10) certainly holds for n even since
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Pn+1 = 0, by (2.5). To prove (5.10) for n odd an inductive type argument, omitted
here, can be used.
6. DERIVATIVE OF LEGENDRE POLYNOMIALS AT x = 1.
First, the Oth derivative, that is, Pn(x), can be evaluated at x = 1. From
(4.2), one has
n P:
P (1) = mZOIT!— . (6.1)
It can be shown that Pn(l) =1 by evaluating the series. An inductive type argu-
ment can be used. First, if n = 1, then since Pn(x) = x, it is clear that
Pl(l) = 1. Also, recall that Po(l) = 1. Next, if Pk(l) =1, we can argue that
Pk+1(1) = 1. The proof can be completed by inducting on k twice, once for k even
and once for k odd. Therefore, for all positive integers n,
n P:
P (1) = Zom—! = 1. (6.2)
Since Pn(x) =1 for n =0, (6.2) than holds for all non-negative integers n.
From (4.2), the ith derivative of Pn(x) evaluated for x =1 is

(1) n P:
P = mzl—(m-i)! . (6.3)
It can be shown that
(n-i+1)
pPay) - — 2 (6.4)
it2

where the numerator is in factorial notation. An inductive type proof can be used
here also. The induction is on i. Since the argument is long and involved it will
not be given here. With the usual agreements, Péo)(x) = Pn(x) and the factorial
k. =1 for k # 0, (6.4) holds for all non-negative integers i and n. Also,

0
for 1 =0, (6.4) reduces to (6.2). Equation (6.4) can easily be shown to have

the forms
1
Pr(li)(l) - (n+1).i - C(n+:,21) (6.5)
it (n-1)!2 P1
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