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ABSTRACT. 1In a series of papers [l1-6], Kratzel studies a generalized version of the
classical Meijer transformation with the Kernel function (st)V n (q, v + 1 (st) ).
This transformation is referred to as GM transformation which reduces to the classical
Meijer transform when q = 1. He also discussed a second generalization of the Meijer
transform invoiving the Kernel function AS“)(x) which reduces to the Meijer function
when n = 2 and the Laplace transform when n = 1. This is called the Meijer-Laplace
(or ML) transformation. This paper is concerned with a study of both GM and ML trans-
forms in the distributional sense. Several properties of these transformations in-

cluding inversion, uniqueness, and analyticity are discussed in some detail.
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1. INTRODUCTION.
In Zemanian's book [7, pl70] the Meijer transformation is defined by means of the
integral
e

K, [£(6)] = 2 f (st)¥/2 x, (2/50) £(¢) dt, (1.1)

o}

where K, (z) is the modified Bessel function of third kind of order v, and has the
integral representation [7, pl48]

S~
NORS  cEa vk f (2 - ¥ ezt g, (1.2)
1

for Re v > -}, Re z > 0.

An alternative form of (1.2) is
-t - —

Ky (2) = 1" f eV le  “fa (1.3)

o
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Kratzel [1, pl49] has introduced a generalization of the Meijer trnasformation in

the form ©
F(s) = K, (¥ {£(e)} =f (s)V n(q, s + 1; (st)d) £(¢) de, (1.4)

(]

where q > 1 and |arg s| < % a+ é).

In his other paper [3, pl43], Kratzel considered an integral representation of
n(p, B; z) in the form
n(p, B; z) = tB ot - zt™? dt (1.5)
0
where p > o and Iarc z| < %. When p =1, B =v + 1,
n(l, v+ 1 %)= 2(2—22)”2 K, (2) (1.6)
Result (1.4) reduces to (l.1) when q = 1.
Also, Kratzel introduced a second generalization of the Meijer transformation

([1, pl48], [2, p328], [3, p 369], [4, p 383] and [5, pl05]) in the form

oo,

F(s) = L,{™ {£(e)) =f AW (nse) /Py £(e) ae (1.7)
(o]
where Re v > % -1, Re {n(st)%} > 0 and the Kernel Av(n)(z) is given by
n-1 z © 1
A, @ () = enT m W [y e T (1.8)

1
I'(\)+l—;)
with Re v > % -1, Rez>0and n=1,2,3.....

It is noted that (1.7) reduces to (l.l1) when n = 2, and to the Laplace transform
when n = 1. Also, (l.7) is a special case of a more general transformation studied
by Dimovski [8, p23; 9, pl4l; 10, plS5é6].

The purpose of this paper is to study both (l.4) and (1.7) in the distributional
sense and establish theorems concerning complex inversion, uniqueness and analyticity.
2. DIFFERENTIAL OPERATORS.

we use the notation and the terminology similar to those of Kratzel [l - 2] and
Zemanian [7, ppl70-200]. The following differential operators will be needed for this
study:

sX 6 = [tV D (eI DT e k=0, 1, 2, ... 2.1

where ¢(t) is a complex smooth function.
My A™ (©1 = o L e p A W), n -1, 2, (2.2)
’

where Av(n)(t) is defined in (1.8).
The operators (2.1) and (2.2) will be used to investigate (l.4) and (1.7)

respectively.
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3. FUNCTION SPACE Kv a AND ITS DUAL.
We define the following seminorms on certain complex smooth functions ¢(t)

(Zemanian [7, pl76]):

Ys’a (¢) = Sup |eat ¢V} sk q o ()| 3.1)
0<t < o ’

where a 1is a real number, v is a complex number with Re v > o.

as the linear space of all functions ¢(t) on o < t < = for

k
v,a

Kv,a which is complete and hence a Frechet space. We note that D(I) is subspace of
k

v,q

self (7, pl71l]. It is noted that the differential operator is slightly different from

We next define Kv,a

which the seminorms Y5 5 exist for each k = 0, 1, 2,...... Each Y is a seminorm on
’

K The differential operator S is a continuous linear mapping of K into it-

v,a’ v,a
that used in the book [ 7 ].
LEMMA 3.1: 1If
$(z) = 2% n (g, v+ 1; 29) (3.2)
where Re v > o and q > 1, larg z| < % (1 + é), then ¢(st) € Kv,a for every t in (o,®)

and for every fixed nonzero s.

PROOF: We have from (3.1)

K i}
vE Jo(st) = sup le2t €7} 5K 4 (st)], Re v > 0.
’ 0<t<w »9q

Making reference to (1, pl53], we use the fact

55,q 0(st) = (-DKED) sk g(se) (3.3)
combined with the asymptotic property of ¢(t) (1, p 153] as t > 0. We prove that, as
t - 0, the seminorms Yt,a ¢(st) are finite for v > } and for every fixed s # 0. Also,
as t > ©, it can be shown that Y%,a ¢ are finite for a < 0 which follows from the
asymptotic property of the function n [1, p 149].
DEFINITION 1: The distributional generalized Meijer transform of f(t) is defined by
F(s) = k(%) £(e) = <€(6), (s0)9 n (a, v+ 15 (s0)D) >, (3.4)
for every s in Qf = {s; s # 0, ]arg sl: % (1 + %| and q > 1}, where < f, ¢ > represents
the number assigned to some ¢ in a testing function space by a member of the dual space.
In short, we call it as the distributional GM - transform of f.
Since by Lemma 3.1, ¢(st) € Kv,a

definition (3.4) has a sense as the application of f(t) € K
1

v,a
DEFINITION 2: A distribution f is called a GM-transformable distribution if f € K;,a

for every fixed nonzero s, and for v > };
1

v,a
is the dual space of Kv,a'

to ¢(st) € Kv,a where

a is any negative real number and K

for some real number a.
NOTE: Lemma 3.1 is not true for (i) Re v = 0, v # 0; (ii) v = 0; and (iii) Re v < 0.
4. ANALYTICITY OF F (s)

The analyticity of F(s) can be expressed in the following theorem:

THEOREM 4.1: If

F(s) = < £(1), (s©)% n (g, v + 15 (s)D > (4.1)
for s € Q, then F(s) is analytic on @g; and

D, F(s) = < £(&), Dg (s)¥ n (a, v + 15 (D)D) > -2
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PROOF: A fairly standard procedure can be used to prove this theorem. However, we

state some initial steps for the proof.

F (s + As) - F(s)
As

= < £(t), Dy (st)I n (q,v + 15 (st)d) > = < £(r), ¥p () >
(4.3)

where
WAs(t) = f; [(st + Ast)Y n (q,v + 13 (st + Ast)d = (st)9 n (q,v + 13 (st)D)]
(4.4)

We use the series expansion of n from [6, p 142] as |
m-a+1

n (q.a; 2) = Z 1-a-ng (0" + 3 1 EID D T @)

n=o = "
and then asymptotic behavior of n as given in [6, p 142]. After some calculation, it
can be shown that
Dg (st)¥ n (q,v + 15 (st)D) e K, , (4.6)
so that (4.2) and (4.3) have a sense. We next follow the arguments given in [Z, PP
185-186] combined with the use of Cauchy's integral formula to complete the proof of
the theorem.
5. FUNCTION SPACE G\,’a AND ITS DUAL
We now define Gv,a as the linear space of all complex-valued smooth functions

¢(t) on o < t < », The topology of this space is generated by a set of seminorms

[¢)
V,a,n as

oc,a,n A(n) (t) = o < tp< ® Ieat tv_i Mg,n Aén)(t)l’ (5.1)

where M:,n is the differential operator defined by (2.2). It is noted that (5.1) exists.
We denote the dual space of Gv,a by G;,a'

LEMMA 5.1: 1If 1

o(st) = AV (v (5.2)
for Re v > o, then ¢(st) € Gv,a for t in (o,~)and for every fixed s such that s # o
provided v > } -~ %.

PROOF: It follows from (3, p 371] that

k (n) n d n-l l-nv d
= -n
Mon VR =2 T T g AW )1 = D" 2 A M (@), (k=0).
Using the following asymptotic property of Asn)(z) given in [3, p 371] in the form
n-1
Asn)(z) = l-‘ T(v + ﬁ) + 0(l) as z * o, Re VvV > o, (5.3)
=0
we obtain
03 Ca (n(st)}/m} = Sup |eat ¢Vl n(st)l/n Aé“) {n(st)l/“}|
ERLY) o<t<®
which are finite for each n=1,2,.... as t > o if
o1 1
Sup |eat ¢V 5 onen ASn) {n(st) 1/}

0<t < ®
are finite provided v > } - %.

n L
We next consider the case for t » », For - = <argz< 7> 2= n(st)lln, we use

2
equation (7) of [3, p 372] to obtain
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1 1
edt V-l o oan Aén) {n(st)!/n}
1 1 -1 1_
T n sl (Zn)ET’ nt ((st)l/“} vin-l) +g7 -1

- n 1
xe (SO ) 4 g (;222317;)}, t>*> s #fo

This expression is asymptotically equal to 1 1
-1 {(-1) v +g7- Lm

1
eat nt gn Vit (2m) 2

Sl— Bl
Bl

a1y v+gs -1 (s oL

x
which is finite if a < o.
REMARK: Even if we take a more general differential operator (that is, of a greater
order, say k) it must involve terms exp[—n(st)l/ﬁasymptotically as t * @, which tends
to zero as t > ®,
DEFINITION 3: A distribution f(t) is called an M-L transformable distribution if f(t)

. 1
€ G, , for some real number a and Re v > g - 1.
’

DEFINITION 4: The M-L transform of a M-L transformable distribution g € G;,a is defined
by

(n) 1
G(s) = < g(t), A, {n(st)@} > (5.4)
where s ¢ Q% = {s, Re s > 0; - % < arg s < %} which is given in (3, p 372].

6. COMPLEX INVERSION THEOREM FOR THE TRANSFORM (1.4).

Kratzel (1, p 151] proved an inversion theorem for (1, p 151) in the classical
sense.

In order to discuss a complex inversion theorem, we need the Wright function
¥q, a; z) defined in [11] in the form

©

n
z

®(q, a; 2z) = éé; T (@ ¥ o (6.1)

This reduces to Bessel function for q = 1, that is,
2
s 22y 2 (Bv

oL, v+ 1 -2 = BTV 3@ (6.2)

One of the properties of the Wright function [1l, p 151] can be expressed as
(n) 1 v+1, 11
Ky e (g, —g—s ©)} = 3 (6.3)

which is needed in proving the following theorem:
THEOREM 6.1: If
(i) G(s) is holomorphic in R where

) 1
Q2 = {s; Re ngT > ¢, |arg s < % (1 + a), q2>1, (6.4)

- 1
(i1) g(t) = 235 fo Y 6(o) ¢ (3 T o(e)) do, (6.5)
L

where the path of integration L is given by
L: Re sq/q+l = c, Iarg s| > ; (1 + %) as s > ®;
then
6(s) = KV (g(0)) (6.6)



364 G. L. N. RAO AND L. DEBNATH

In other words, we prove that, for any ¢(s) € D (I) in the sense of convergence in D'(I):

< kP {g(0)}, #(s) > = < Gls), o(s) > (6.7
(q)

where K,

is given by (1.4)
PROOF: In view of condition (ii) of the theorem, the left hand side of (6.7) can be

written as

- 1 v+l
a 2#k‘/ 077 6(0) #(gs —5 9()) Ao, (st)V n (g, v+ 15 (s0)T >, 6(s) >
L
K stV 1 v+l
. E%If [!)' E5%n (@, v+ 15 0T @ T () G (o) ad, e(s) >
L
= 1 (say)
In view of (6.3), this expression yields
I U N 1C))
L=< f g 49, ®(s) > (6.8)
L

which is equal to, using a relation in [1l, p 152]
= < G(s), ¢(s) >
This completes the proof.

We shall give here a weaker version of a uniqueness theorem.
THEOREM 6.2: If

F(s) = kP £(t) on g

G(s)

Kéq) g(t) on Q

8
and

F(s) G(s) on Qf(W Qg’

then f(t) = g(t) in the sense of equality in D'(I).
PROOF: By Inversion Theorem (6.1), we have
F(s) - 6(s) = k$¥ [£(0)1 k(D [g(®)]

=k (£(0) - &) = 0 in B N0y

This implies that f(t) = g(t) in Qf flﬂg in the sense of equality in D'(I).
7. CLOSING REMARKS: A transform more general than (l.4) and (1.7) was introduced by
Oberchkoff in 1958. A modified version of that transform was studied by Dimorski

[9 - 10] who proved both real and complex inversion theorems. We would like to discuss
some of these thoerems in the sense of distribution in a subsequent paper.
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