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ABSTRACT. It is known that the generalized sampling theorem is valid for certain
finite limit integral transforms of square integrable functions. In this note, we
will extend the validity of the theorem to include transforms of absolutely integrable
functions associated with differentiable kernels. 1In the proof, we will use the
Holder inequality and a known theorem concerning the uniform convergence of the
orthogonal series to the differentiable kernel of the particular integral transform.
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1. INTRODUCTION

In a previous paper [1], we presented various methods for proving the Shannon
sampling expansion of band limited functions, to include absolutely integrable
Fourier transforms besides the usual square integrable ones. In this note, we will
use the Holder inequality to extend the generalized sampling theorem [2] to finite
limit integral transforms of absolutely integrable functions. An example is the

following finite limit Jo-Hankel (Bessel) transform

sin at _ fa Jo (xt)dx 0y
t 0 -/az-x2 ’

. 1 . .
of the function F(x) = —:7===== which is absolutely integrable but not square inte-

Xva©-Xx

grable on the interval (0,a) with respect to the weighting function p(x) = x. Before
we state the generalized sampling theorem and give the proof for its present relaxed
version, we will introduce a few basic definitions and the Holder inequality [3].

b
f(x) € Lp(a,b) means that f(x) is Lebesque measurable and that J ,f(x)|pdx < o,
a
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The norm ||f||p of f is defined by X 1
el = [Jalf(x)lpdx]p : (1.2)
The following inclusion relation may prove valuable. For k > 0 and 0 < q < p <
el e e ec® e e P e (1.3)

where Ck stands for the set of functions which are k-times continuously different-

iable. A sequence SN(x) is said to converge in the mean of order p to f(x) if

(b p
IimJ ]f-sN(x)[ dx = 0. (1.4)
N-oo/ a

For p==, this convergence is equivalent to uniform convergence in the sense of the

norm ]|f||°° [3].

. X !
HOLDER INEQUALITY: For a finite or infinite interval, let f ¢ P and g € L! ,

where 1 < p < « and %—+ %T-= 1; then

1 1
Jlfgldx < [)rlfl"dxlp[JIglp'dx]P . (1.5)

2.  THE GENERALIZED SAMPLING THEOREM
The statment of the generalized sampling theorem is: Let I be an interval.

Suppose that for each real t

f(t) = jIK(t,x)g(x)dx (2.1)
where g(x) € LZ(I), K(t,x) € LZ(I), and {K(tn,x)} is a complete orthogonal set on
L2(I). Then

f(t) = lim z f(t )S (t) (2.2)
N>o [n] <N M7
where

f
K(t,x)K(tn;x)dx
Sn(t) =1 . (2.3)

K(tn,x)zdx

I
Unless otherwise indicated, summations like ch will assume summation limits as in
(2.2). Shannon's sampling theorem represents a special case of this theorem corre-
sponding to K(t,x) = eiXt on the interval [-a,a]. The origin and various extensions
and applications of the sampling theorems are discussed in detail in a tutorial
review article by the author [4] with nearly 250 references. In this article, we

only hint at the possibility, among other remarks, of the following extension.

Here we present the relaxed version of this generalized sampling theorem to
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allow g(x) € Lp(a,b) with 1 < p < 2 instead of g(x) € Lz(a,b) only, for all differ-
entiable kernels K(-,x).

THEOREM. The above generalized sampling expansion (2.1)-(2.3) is valid for
g(x) € Lp(a,b) where 1 < p < 2, for all differentiable kernels K(-,x).

The proof will rely mainly on using the Holder inequality (1.5) instead of its
special case, the Schwarz inequality (p=p'=2), which was used in proving the above
generalized sampling theorem by Kramer [2]. Consider SN(t) and DN(x), the partial

sums of the sampling and orthogonal expansions for f(t) and K(t,x) respectively:

N
SN(t) = I f(tn)sn(t) (2.4)
n=1
N N ) s
DN(x) = nElcnK(tn,x) = nElsn(t)x(tn,x). (2.5)

We note that the sampling function Sn(t) in (2.3) is the Fourier coefficient of the

kernel K(t,x) in terms of the complete orthogonal set {K(tn,x)}.
[£(8)-sy ()] = [£(t) - ZE(e IS\ (0)

= JI[K(t,X) - ZK(tn,X)Sn(;)]g(X)dXI < [JIIIK(t.X) -
zx(tn,x)sn(t)lpdxlp[J FISIUES L (2.6)
I

after using equations (2.1) for f(t), (2.4) for SN(t), (2.1) for f(tn) in (2.4), and
the Holder inequality (1.5). The convergence in (2.6) depends on the type of LP
convergence of DN(x) to the kernel K(-,x), which in turn dictates the condition

g(x) € Lp'(a,b) with %-+ E%—= 1. But since the orthogonal expansion (2.5) for K(-,x)
is done in Lz(a,b), we are left with 2 < p <= and so 1 < p' < 2. As we mentioned
earlier, the convergence in L” sense is equivalent to uniform convergence. Hence,
it remains to show that DN(x) in (2.5) converges uniformly to the kernel K(-,x).

We first note that DN(x) is an orthogonal expansion of the kernel K(t,x) in terms

of its discrete values K(tn,x), which for all practical purposes are taken to be the
solutions of the nth order self-adjoint Sturm-Liouville eigenvalue problem [5].
Uniform convergence is assured (Edwards [3, p. 197 ) for such orthogonal expansions
to differentiable functions that also satisfy the boundary conditions of the Sturm-
Liouville problem. The latter boundary condition on the particular function in
question K(t,x) is clearly satisfied as it determines tn for K(tn,x).

The convergence of the generalized sampling series of the example in (1.1) is
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now assured since Jo(xt) is differentiable on (0,1).
3.  CONCLUSIONS

The importance of the generalized sampling theorem and hence its present relaxed
version lies in its use in system analysis. For example, the Hankel transform [6]
is used to replace the double Fourier transform in treating problems with circular
symmetry, particularly in optics. The generalized sampling theorem was also used
for the analysis of time-varying systems [7] and the recent development of discrete

Hankel (Bessel) and classical orthogonal polynomial transforms [8,9].
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