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ABSTRACT. A positive semigroup is a topological semiqroup containing a subsemiaroup
N isomorphic to the multiplicative semigroup of nonnegative real numbers, embedded as
a closed subset of E2 in such a way that 1 is an identity and 0 is a zero. Usinag
results in Farley [1] it can be shown that positive commutative semigroups on the
plane constructed by the techniques given in Farley [2] cannot contain an infinite
number of two dimensional groups. In this work an example of such a semigroup will
be constructed which does, however, contain an infinite number of one dimensional
groups. Also, some preliminary results are given here concerning what types of
semilattices of idempotent elements are ovossible for positive commutative semigroups
on E2. In particular, we will show that there is a unique positive commutative semi-
group on E2 which is the union of connected groups and which contains five idempotent
elements. Also, we will show that such semigroups having nine idempotent elements
are not unique by constructing an example of such a semigroup with nine idempotent
elements whose semilattice of idempotent elements is not "symmetric" and hence which
is not isomorphic to the semigroup with nine idempotent elements constructed in Farley

[2].
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1. INTRODUCTION.
A topological semigroup is a Hausdorff space together with a continuous, associa-

tive multiplication. The author has defined a positive semigroup to be a topological
semigroup containing a subsemigroup N isomorphic to the multiplicative semigroup of

nonnegative real numbers, embedded as a closed subset of E2 so that 1 is an identity
and 0 is a zero [1]. Such semigroups which meet the additional requirement of being
the union of groups are called positive Clifford semigroups [1].
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In Farley [2] a method was given for constructing positive commutative semigroups
on the plane as the union of {0}, an arbitrarily large number of two dimensional groups,
and one dimensional groups which are bounding rays of the two dimensional groups.
Since such semigroups are positive commutative Clifford semigroups on E2, they cannot
contain an infinite number of two dimensional groups as shown in Farley [1]. However,
in this work an example will be constructed of a positive commutative semigroup on E2
which contains a sector of one dimensional groups, and thus contains an infinite number
of one dimensional groups.

While the problem of attempting to discover what types of semilattices of idempo-
tent elements are possible for positive commutative Clifford semigroups on E2 appears
to be difficult to answer in general, some preliminary results are given in this work.
Using the techniques employed in Farley [1] we will show that there is a unique (up to
isomorphism) positive commutative Clifford semigroup on E2 vihich is the union of con-
nected groups and which contains five idempotent elements. This semigroup, along with
its semilattice of idempotent elements will be described herein. Also, we will show
that such semigroups having nine idempotent elements are not unique by constructing
an example of such a semigroup having nine idempotent elements whose semilattice of
idempotent elements is, in some sense, not symmetric, and hence is not isomorphic to
the semigroup with nine idempotent elements constructed in Farley [2].

2. PRELIMINARIES.

An isomorphism between two topological semigroups is a function which is both an
algebraic isomorphism and a hcmeomorphism. Unless otherwise indicated, R will denote
a semigroup isomorpnic to the multiplicative semigroup of real numbers, N will denote
the nonnegative members of R, and P will denote the positive members of R. For a
topological space X, we will let & = {(x,x):x ¢ X}. If R is an equivalence relation
on X, X/R will denote the set of equivalence classes of X modulo R. A min thread is
a closed interval [a,b] together with the usual topology and multiplication defined
by x =y = min{x,y}.

3. CONSTRUCTION OF EXAMPLES.
We construct first an example of a positive commutative semigroup on E2 which

contains an infinite number of one dimensional groups.

EXAMPLE 1. Let us consider two copies of N x N denoting them as N x N and M . M,
Also, let us form a sector of one dimensional groups by taking N - {min thread} and
shrinking the base to a point. Let us call this sector N', and let the idempotent
elements on its bounding rays be denoted e, and ey, with e,ey = es. Let (a,b)n denote
an element of N - N, let (a,b)m denote an element of M x M, and let (p, eu) denote an
element of N', where e s an idempotent element. Let us define a multiplication on
S" = [(NxN)U(M>M) UNJ]in the following manner. Let multiplication be coordi-
natewise in N x N, M < M, and N'. Let us define (a,b)n . (p,e") = (bp,eq) =
(poe,) » (asb) . (poe ) - (p'ie,) = (pp'se e ) = (p'se,) « (pse ), (asb) - (c d) =
(ac,bd) = (c,d) - (a,b) , and (p,e ) - (x,y) = (0,py), = (x,y) - (p.e ). This
multiplication is easily checked to be associative, and its continuity follows from
the continuity of multiplication in N x N, M x M, and N'. So, with the usual topology,
S' is a topological semigroup. Let us define a relation R on S' in the following way.

Let A =R, and let R be symmetric by definition. Let [(a,b)m,(c,d)n] . R if and only
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ifa=c,and b=0-=4d. Let [(x,y)m, (p,e3)] e Rif and only if x =0 and y =
Let [(s,t)n(p,ez)] e R if and only if s = 0, and t = p. Finally, let

[(O,ea), (0,0)m] e R and [(O,ea), (O’O)n] e R. Then, R is clearly an equivalence
relation and it is not difficult to check that R is, in fact, a closed congruence.
Thus by [2] S = S'/R is a topological semigroup on EZ.

It should be noted that an example of this type cannot be constructed using just
one copy of N » N and sector of one dimensional groups since e, would have to be 0
where e, = (1, 0) So, this example is more or less minimal.

Upon 1nvest1gating what types of semilattices of idempotent elements are possible
for positive Clifford semigroups on the plane, we first note that the semigroup con-
taining five idempotent elements constructed by the method employed in Example 1 or
Example 3 of Farley [2] has the following semilattice of idempotent elements, where 1
denotes the element (l,l)N, f denotes (]’])J’ & denotes (1,0)N = (1,0)
(0,1)N = (O,l)J, and 0 denotes (0,0)N = (O,O)J:

J° e2 denotes
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Figure 1. Figure 2.

For positive Clifford semigroups on E2 which are the union of connected groups, we will
show that the semigroup is unique (up to isomorphism) among those having exactly five
idempotent elements.

THEOREM 1. The positive commutative Clifford semigroup S on E2 which contains
exactly five idenmpotent elements and is the union of connected groups is unique.

PROOF- Let H(1) denote the group having the identity elewent 1, and let CL[H(1)]
denote the closure of H(1). Then CL([H(1)] is isomorphic to N N as shown in Farley
[1], since CL[H(1)] is two dimensional by Horne [3]. Let e and e, denote the idempo-
tent elements on Pe] and PeZ’ the bounding rays of H(1), let f be the remaining idempo-
tent element which is in E \CL[H(1)], and Tet H(f) be the group with identity element
f. Ther, the only possibilities for the semilattice of idempotent elements are the one
given above ( Figure 1) and the other given in Figure 2.

We now show that this semilattice s, in fact, impossible. Since S has exactly five
idempotent elements and is the union of connected groups, H(f) = Ez\\CL[H(l)]. Now,
suppose e]f = 0. Let {Xn} be a sequence in H(f) such that (Xn} S ey Then

{e] n »ef = ey But, e X = e](fX), since f is the identity element in H(f). So,
(e (f n)} - ey However, each term of the sequence [e](an)) is 0, under the assump-
tion that e]f = 0. This implies {e](an)} > 0 which is a contradiction.

A positive Clifford semigroup having nine idempotent elements as constructed by
the method employed in Example 3 of Farley [2] has the following semilattice of idempo-
tent elements, where 1 denotes (1,1)n, j denotes (1,1)j, m denotes (1,1)m, k denotes
(1,1)k, e denotes (],O)n = (1,0)j, g denotes (0’])j = (1,0)m, h denotes (0,1)rn =
(1,0)k, f denotes (0,1)k = (0,1)n and 0 denotes (0,0)m = (O’O)j = (0,0)n = (O,O)k:(Fig-3)=
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Figure 3. Figure 4.

We now construct an example of a positive Clifford semigroun on E2 whose semi-
lattice of nine idempotent elements is not isomorphic to the one above, and is, in
some sense, not symmetric.

EXAMPLE 2. Let us consider four copies of N ~ N. Let us denote these copies as
N - N (which will be G), J J, M < M, and K < K. Let us define a multiplication on
S'=[(N<N) U@ ~J)U (M M U(K-K]in the following manner. Let the multi-
plication be coordinatewise in each copy of N x N, and let the multiplication be
commutative on all of S'. Let (a,b)j . (c,d)m = (ac,bd)m,(a,b)j . (c,d)k = (ac,bcd)m,
(a,b)k . (c,d)m = (ac,abd)m, (a,b)n . (c,d)j = (ac,abd)j. (a,b)n . (c,d)m = (ac,abd)m,
and (a,b)n . (c,d)k = (ac,bd)k, where (a,b)n e (N x N), (a,b)m (M x M), (a,b)j
(J - J), and (a,b)k « (K~ K). This multiplication is easily verified to be continuous
and associative. So, with the usual topology, S' is a topological semigroup. Let us
define a relation R on S' as follows. Let A< R, and let R be symmetric by definition.
Let [(a,b)j,(c,d)n] « Rif and only ifa=candb=0=d. Let [(a,b)j,(c,d)m] . Rif
and only if b=danda=0=c. Let [(a,b)m,(c,d)n] e R if and only if a = ¢ and
b=0=4d. Finally, let [(a,b)k,(c,d)n] ¢ Rif and only if b=dand a =0=c. Then,
R is easily checked to be a closed congruence, and consequently S'/R is a topological
semigroup on £2, Let us denote by e the element (1,0)n = (1,0)., by g the element
(O,])j = (O,I)m, by h the element (1,0)m = (I,O)k, and by f theJelement (0,])k = (O,I)n.

Also, let us denote by 1 the element (],l)n, by j the element (1,1)., by m the element

(],1)m, by k the elment (l,])k, and by 0 the element (0,0)n = <0’0)j = (0,0) = (0 0)k
. ' m ’ .
Then, the semigroup S = S'/R has the semilattice of idemotent elements (Fig.s)
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