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ABSTRACT. Let ﬁ(U,a,:,E,g) be a pseudo-Riemannian manifold of signature

(m+1,n), One defines on ﬁ an almost cosymplectic para f-structure and proves
that a manifold ﬁ endowed with such a structure is £-Ricci flat and is foliated
by minimal hypersurfaces normal to £, which are of Otsuki's type. Further one
considers on ﬁ a 2(n-1)-dimensional involutive distribution P* and a recurrent
vector field y. It is proved that the maximal integral manifold M of P* has
V as the mean curvature vector (up to 1/2(n-1)). If the complimentary orthogonal
distribution P of P* is also involutive, then the whole manifold ﬁ is foliate.

N
Different other properties regarding the vector field V are discussed.
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1. INTRODUCTION.

Recently, many papers were devoted to f-structures or para f-structures
(Ishichara and Yano [1]; Kiritchenko [2]; Yano and Kon [3]; Sinha [4]).

In this paper we consider a Cm-pseudo-Riemannian manifold (ﬁ,g) of dimension
2n+l and of inertia index n+l and such that the (l,l)-tensor field f coincides
with the para-complex operator U (Libermann [5]) of square +1. Furthermore we

N N
suppose that M is equipped with a triple (Q,n,£) where

1°. B is a canonical 2-form of rank 2n exchangeable with the para-Hermitian
component E of the metric tensor E;
2°, ﬁ is a cano:ical 1-form such that (Aa)nA% # 0;
3°. £ 1s the canonical vector field such that
N N
n() =1, ign =0, Ug =0,

1.1
& -0, EMyeE < §dy.e,h. a-n

N
Z'

Ne

N
In (1.1) V is the covariant differential operator on ﬁ and
vector fields on M.

, are any

If the above conditions are satisfied, we say that g is endowed with an
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almost cosymplectic para f-structure (abr. a.c.p. f-structure). In this case M
is called an a.c.p. f-manifold.

The differential distribution Dn = {% € TM,:(E) = 0} on ﬁ is involutive
and is called horizontal.

It is proved that an a.c.p. f-manifold is always £-Ricci flat and that it is
foliated by minimal hypersurfaces Mﬂ’ tangent to Dn’ which are of Otsuki's type
(otsuki [6]).

Suppose now that D and pt are two complementary orthogonal differential

distributions in Dn and % is a vector field in D. If one has

W-Up X+ve X +Ve ¢ (1.2)
for all ; e D, ;L € DL, and 3,%‘,3 € Al(g), we say that D 1is contact covariant
decomposable (abr. c.c.d.). Let P be a c.c.d. hyperbolic 2-plane of Dn' If
the dual forms of two null vector fields which define P form an exterior recurrent
pairing (Rosca [7]; Morvan and Rosca [8]), we say that the manifold M admits a
striet c.c.d. hyperbolic 2-plane.

With the paring (P,P*) are associated a vector field % € P (called the
recurrence vector field) and two vector fields %n,an e Pt (called the distin-
guished vector fields ).

In the present paper the following properties are proved:

(i) The 2(n-1)-distribution Pt s always involutive and the mean curvature
vector field of its maximal integral manifold M is (up to a constant
factor) equal to the induced vector field of %.

(ii) The simple unit form 3 of P* is exterior recurrent and UPV is a

characteristic vector field of $.
(iii) The necessary and sufficient condition for M to be quasi-minimal (Chen 9N
is that %n or X be a null vector field, and the necessary and

2n N N
sufficient condition for M' to be minimal is that both X and X

2n
be null vector fields.

(iv) 1If M s minimal, then the distribution P 1is also involutive and the
integral surfaces of P are totally geodesic in Mn which in this case
is foliate.

N ~
(v) Both vector fields Xn and X2 are U-geodesic directions on M.
NN Y
2. ALMOST COSYMPLECTIC PARA f-MANIFOLD &(U,Q,n,{,g).

N
Let (M,E) be a Cw-pseudo—Riemannian manifold of dimension 2n+l and of

inertia index n+l.

A
If M is equipped with a non-zero tensor field f of type (1,1) of

constant rank and such that
£(£2-1) = 0 (2.1)

(I is the identity tensor), then f is called a para f-structure (Sinha [4]).

In the following we suppose that f coincides with the para-complex operator
U (Libermann [5]). 1In addition, we suppose that g is equipped with the triple
(B,E,g) where:

n
1°. @ 1is a canonical 2-form of rank 2n exchangeable with the para-Hermitian
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component En of the metric tensor E (Buchner and Rosca [10]).

o " von,
2°. n 1is a canonical 1-form such that (AQ) An # 0 everywhere.
3°. £ 1is the canonical vector field such that
~n
R(E) =1, iEQ = 0; 1i: interior product. (2.2)
If one has
v’-1 = V@ £= g = 0, (2.3)
dn = o, (2.4)
N NV N
B(7yE,2%) = §(Vy,¢,2) (2.5)

Y N NN
where V is the covariant differential operator on M and Z, Z' are vector fields
Y N N
in M, we say that (U,Q,n,g,g) defines on M an almost cosympletic para f-struc-
N NN "N
ture (abr. a.c.p. f-structure) and M(U,Q,n,£,g) 1is called an a.c.p. f-manifold.

The differentiable distribution Dn on defined by

4

M
N N N
D= {X ¢ T™, n(X) = 0}

n
is called horizontal.
It is worthwhile to note that equations (2.3), (2.4) and (2.5) show that on
ﬁ the triple (U,K,E) defines an almost paracontact structure (Sinha [4]), D'_|
defines a (2n)-foliation, and £ 1is a gradient.
Let W = vect {ha’ha*’ho =g; a=1,...,n, a* = a+n} be a local field of Witt
frames (Vranceanu and Rosca [11]).

One has (Libermann [5]):
Uh, =h_, Uh s = -h_ , U =0 (2.6)
and at each point 3 € ﬁ one has the splitting
(®)n = Sv@ Sx (2.7
np |14 P
where gg and §§ are two self-orthogonal vector n-spaces spanned by {ha}
and {ha*} respectively.
Since the null vector fields ha and ha* are normed, one may write
g(h,hy) = 0, E(h x,hy) =0, 2.5
1, 8(6,8) =1

n
g(h_,h_%)

*
where A,B = 0,1,...,2n; A# a , B # a.
Y W
Now let {tA} be the dual basis of W and eg = ¢§C$C (?gc € Cm(M)) be
N N
the connection forms on M. Then the line element d; of M (dg is a canonical

vectorial l-form) and the connection equations are expressed by
*
dp = 0°® ha-l~$a ® ha*+¢{® 3 (2.9)

and
Vh, = 829 h
A~ %® Ny
N Y
where V 1is the covariant differentiation operator on M. By (2.8) and (2.10) one

finds
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N n,. .

ea*=e: =0, e:=o,

va pk va* ap* va

6 + ea: =0, 6 +6, =0, 8%=0, (2.11)
n, N, n, N,

8° +82 =0, 8% +08> =0,

a o a [o]

and the structure equations (E. Cartan) may be written in the following symbolic

form:

as = -8Aw (2.12)
and

46 = -608 +@ (2.13)

n
where é E@: are the curvature 2-forms.

Further taking into account (2.4), we may set

o o na®
60 = %, 60x = -7 . (2.14)
Now by means of (2.10), (2.11) and (2.14) one gets

~ *

VE=06> ® h_ - 6°® h_. (2.15)
a a

In addition it follows from (2.15) that,

N
Vgﬁ =0 (2.16)

which proves that & 1is a geodesic direction.
From (2.9) and (2.8) one gets

§= =2 P 3 + e ¥ (2.17)
a
where N =2 Z e w is the para-Hermitian (Buchner and Rosca [10]) component

of the metric tensor g.
N

The 2-form Q which is exchangeable with gn is then expressed by

" *

y o aa?

Q= . (2.18)

a
Using (2.15), we can find the following expression of the quadratic differential

N N
form <VE,VE> :
v ~, ~, N
<VE,VE> = -2 ] 47® o° = -g . (2.19)
a
Denote by

Yo=ula..aum (2.20)

the simple unit form corresponding to Dn. One may write the volume element 3 of
Y
M as

LY N N

g=mwAn. (2.21)

N
1f Lg means the Lie derivative in the direction Z, then by a simple argument

one can find
LG = dr = (div £)3. (2.22)
Using (2.12) and (2.13), one gets d? = 0, and this yields

div £ = 0. (2.23)

But on a Riemannian or pseudo-Riemannian manifold the following Yano integral
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formula holds (Yano and Kon [12]):

oA N
div(V¥zZ) - div(div 2)z
z (2.24)
o v n v ) .
= Ric(2) + } (Y, Z,ep)E(e,,Y, 2) - (div 2)°.
N A,B A B
In (2.24) Z, Ric and {eA} are arbitrary vector fields on M, the Ricci tensor of
"
M and a vectorial basis respectively.
Continuing the consideration, one finds (2.24) and (2.15) by means of (2.5).
Taking into account (2.8), a short computation gives Ric(&) = 2n.
"
Hence M is Ricci constant in the direction of the structure vector & (or
£-Ricci constant).
On the other hand, by means of (2.19) and (2.4) one sees that : is coclosed,
i.e. T = 0. Hence since ar = 0, it follows that T is harmonic. Then if we
denote by Mrl the leaf of Dn, it follows from the theorem of Tachibana [13] that
Mn is minimal. This property can also be verified by a direct computation.

N N
Since the induced value § = QIM of the almost sympletic form Q 1is also
n

almost symplectic, the submanifold Mn is an example of a minimal submanifold
having an almost symplectic structure Q.

If g is endowed with a para co-Kaehlerian structure (Buchner and Rosca [1oh,
then £ is a symplectic form,

Denote now by III the induced value on Mn of the quadratic differential form
given by (2.19). Since £ is normal to Mn’ then, as is known, III represents the
third fundamental form of Mn.

Thus according to (2.19) III is conformal to the metric of Mn' Taking into
account of the para-Hermitian form of En and (2.15), it is easy to see that Mn
possesses principal curvatures equal to +1 and principal curvatures equal to -l.
Therefore referring to Otsuki [6], we may say that Mn is a minimal hypersurface of
Otsuki's type.

THEOREM 1. Let g(U,B,:,E,g) be a pseudo-Riemannian manifold endowed with an
a.c.p. f-structure. Such a manifold is &-Ricci constant and is foliated by minimal
hypersurfaces Mn of Otsuki's type which are orthogonal to the structure vector
field &.

3. CONTACT COVARIANT DECOMPOSABLE DISTRIBUTIONS ON ﬁgglﬁlﬁjglgl.
Referring to the definition given by Rosca [71 we give now the following
DEFINITION. Let g be an odd-dimensional Cw—Riemannian (resp. Cw—pseudo-

Riemannian) manifold equipped with an almost contact (resp. almost para contact)
structure defined by a structure l-form K and a structure vector field £. Let
Dn, D and g be the horizontal distribution defined by k = 0, a differentiable
distribution of Dn and the covariant differentiation operator on g. Let D' be
the complementary orthogonal distribution of D in Dn and 3 be a vector field

of D. Then if one has
N N N n N N
W=u®x+ul®x*+v®5 (3.1)
n ;; n Ny v 1,0
where X e D, e DD and u,u ,v € A"(M), we say that the distribution D is
eontact covariant decomposable (abr. c.c.d.).

As is known, the null vectorial basis {ha’ha*} of Dn admits the orthogonal



262 V. V. GOLDBERG AND R. ROSCA

decomposition

D =P 1.t P P (3.2)

where P_ = (h_,h_x) 1is a hyperbolic 2-plane.
a a a Y
We say that the a.c.p. f-manifold M(U,Q,n,£,g) defined in Section 2, carries
a strict contact covariant decomposable hyperbolic plane P (abr. s.c.c.d. hyper-

bolic plane) if:

1° the distribution P is contact convariant decomposable;

2° the dual forms of the null vectors which define P form an exterior

recurrent pairing (in the sense of Rosca [7]).

Without loss of generalitx one may suppose that P 1is defined by hn and

hn* = h2n'

In the first place,using (2.10) and (3.1), one finds

Vo _ Vo

en = xn "n N
ga e v 3.3)
2n - *2n "2n

N
2% e ™M and ae {1,i%; 1 =1,...,n; i* = 1+n}.

1'\1
on € AT *n**on
Denote by PL the complementary orthogonal distribution of P in Dn'

N
where T

Obviously one has P' = {ha}> and we set

N
xn = xzha e Pt .
(3.4)
; = ;a h ept
2n 2n o .
Secondly, according to Rosca [7]; Morvan and Rosca [8], the dual forms 3“,32“
corresponding to P = (hn’th) define an exterior recurrent pairing if one has
B W W
dgm = §R g an L Y2 ) an (3.5)
where :n’¢2n’3n,32n € Al(ﬁ).
As a consequence of (3.5), using (2.12), (2.11), (2.14), and (3.3), we find:
O,
T =¥ XY,
n n'e “n (3.6)
Yo=Y (¥ '
2n 2n 2n
- a
where ¥n’¥2n e C (ﬂ) vanish nowhere on M. Therefore (3.5) become of the form
st = om A§’+RA$2“, .7
Wl 3 a e yaan
where we have set
vo_an _ 42n
y=8 o (3.8)
Denote now by
N
Vo=l (3.9)
the simple unit form which corresponds to P. It follows from (3.7) that
N
dy = 0. (3.10)

",
Since dim(Ker y) # 0, we may also say that $ is a presymplectic form (Souriau [14]).
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Further taking the exterior derivative of equations (3.7) and referring to (2.4), one

gets by an easy argument that

aW=W-y=% Ye . (3.11)
It follows from (3.11) that
dy =@¥/¥n 5y, (3.12)

i.e. ; is exterior recurrent and has the exact form dt/% as the recurrence l-form.
Denote now by I(Pl) = {B € A(ﬁ): ¥ annihilates P*} the ideal in A(ﬁ) of
the distribution Pt Obviously w belongs to this ideal and by means of (3.10)
we may say that 1(P*) is a differentiable ideal @ieEt) c 1¢e%)).
It follows as is known, that the distribution P* is involutive (this can be
also checked by a direct computation with the help of (3.3) and (3.6)).

Let us now denote

- * *e
S L SRR W el W) WO Wt (3.13)

the simple unit form corresponding to the distribution P'. Then by means of (2.12),
(2.11), (2.14), (3.3), (3.4) and (3.6), a straightforward calculation gives

YNV N g Voo Y v2n

g(Xn,Xn)w + ong(XZn’XZn)w ) A *' (3.14)

ag =
¢— n

vV

(
Hence the 2(n-1) form 3 is exterior recurrent and has the form
f\,_ wn NN N '\,zn
@ = fe(X,X)u + £, 8(X, ,X, Ju (3.15)

as a recurrence form (Datta [15]).

In the following we will call the vector field

N ’%a’\:'\;’\z ’%4’\:’\1 Y
V= ng(Xn.Xn)h2n + an(XZn’in)hn (3.16)
. NN VoA .. .
the recurrence vector field on M (a(V) = g(V,V)) and X ,X the distinguished

vectors (abr. d.v.) of the distribution P*.

By means of (2.6) one has

Ny A A "
W= £, g, X, 0n - g X n, (3.17)
and according to (2.8) this implies
N N
a(uv) = 0. (3.18)
Since U% € P, we have from (3.13), (3.14), and (3.18)
W =0,
(3.19)

1,448 = 0
and the above equations proved that Ue is a characteristic vector field of %.
xoreover, if % € P is any vector field of P, one gets instantly L%X = g(%)%; i.e.
X 1is an infinitesimal conformal transformation of x. Next the Ricei 2-form
corresponding to P is 8: = -3%2), and it can be found by means of (2.14), (3.3)

and (3.12):

dt N A N Y ~
TAY -é: o+ g(X X, )Ty AT oL (3.20)
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Hence equations (3.12) and (3.10) show that the necessary and sufficient condition

N
for ész to be closed is that the vector fields Xn and §2n are orthogonal.
Using now (3.11) and (3.9),one gets
dp Voo vovo v noonN
@n(xn,x2n) = g(xn,x2n)<anx2n,nnAn2n> . (3.21)

N N
Therefore, if xn and X2n are orthogonal, then 632(%n’§2n) vanishes.
Denote now by M*  the maximal connected integral manifold of P* and let (J
be the mean curvature (2n-3)-form of M*. Then () is defined by

— R - * *_
@=1 ol aaaat P A e

i*-l 1 A1* (3.22)
w w

i .k *
+3 (-1 LU Nt TP VY S SR WP PN hy
i

(the roofs indicate the missing terms and we denote the induced elements on M by

supressing ~ ), Since ¢ is the volume element of ML, one has (see Chen [9])

'@ = 2(-1)00® H (3.23)

E R

where H 1is the mean curvature vector field of M., ¢ IML, and d' 1is the

exterior covariant differentiation with respect to V = $|Ml (Poor [18]). Using (2.10),

(2.12) and taking into account (2.14), (3.3), (3.6), and (3.16), one finds after
some calculations

1
= E?;:TT v; V= VlM; . (3.24)

Hence the mean curvature vector is, up to the factor §?£:TY’ equal to the induced

H

n n
value of the recurrence vector field V in M. Using the definition given by Rosca

(167, [17], we obtain the following results:

1°. The necessary and sufficient condition for M" to be quasi-minimal
i.e., H be a null vector field, is that one of the d.v. of the distri-
bution P be a null vector.

2°. The necessary and sufficient condition for M'  to be minimal is that

both d.v. of P be null vectors.

We shall now make the following consideration. According to (2.21), (3.9) and
(3.13) the volume element of the hypersurface Mn defined by n = 0 may be written
as:

g=¢AY (3.25)

In (3.25) ¢ and ¢ are the restrictions of * and % on Mn'
It follows from (3.10) that if one has g(Xn,Xn) = g(in,in) = (0, one may
write A¢ = 0 where A = do§ + Sod 1is the harmonic operator. Therefore we are
in the situation of Tashibana's theorem (Tashibana [13]) and Mn is covered by
two families of minimal submanifolds, M and M, tangent to Pt and P respectively.
Equations (2.6) shows that UP* = P and UP = P. Hence we may say that if both
d.v. Xn and in are null vectors, then Mn is foliated by two families of in-
variant submanifolds tangent to P* and P, and therefore the whole manifold ﬁ is
foliate. Moreover, if we consider the immersion of M in Mn, then the 1l-forms
62, B;n given by (3.3) define the normal vector quadratic form II (it is known

that II is independent of the normal connection). But by means of (3.6) we can see
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that II vanishes, and therefore M 1is totally geodesic in Mn.

We shall give now the following

DEFINITION. Let M be an invariant submanifold of a manifold M endowed
with a para f-structure and II be the normal vector quadratic form of M. Then
any tangent vector field X of M such that II(X,fX) = 0 is called an
f-geodesic direction on M.

Let us consider now the immersion x: M* » M. Denote by L= <dp,th> and

£2 = <dp,Vh2n> the second quadratic forms associated with x.
n

By means of (2.9), (2.10), (3.3), and (3.6) one finds after some calculation

1 a a,2
g == QT =f () xow)
n f_ 'n n n E n ’ (3.26)
_ 1 - a o2
Lon = T 20 ® Ton = F2al %) -
2n o
Therefore the normal vector quadratic form II € (THRT*) ® (T*ML) is given by
1 1
=g (Pre by + , "2®"20) @ Poq - (3.21)

Referring now to (2.4), one gets by means of (2.26) and (2.27)
II(Xn,UXn) =0, II(in,UXZn) =0 .

Therefore the d.v. fields on M" are both U-geodesic.
N
THEOREM 2. Let M(U,9,n,&,g) be an a.c.p. f-manifold admitting a strict
contact covariant decomposable hyperbolic plane P and p* be the orthogonal

N
component of P in the horizontal distribution D Further let V € P and

[
Xn’XZn
associated with the pairing (P,P*).

n°
e P' be the recurrence vector field and the distinguished vector fields

Then the following properties hold:

(i) The distribution Pt ois always involutive and the mean curvature vector
field of the maximal integral manifold M of P s (up to a constant
factor) equal to the induced vector field of 6.

(ii) The simple unit form z of PL is exterior recurrent and Ue is a
characteristic vector field of 3.

(iii) The necessary and sufficient condition for M*  to be quasi-minimal is
that one of the d.v. fields of M' be a null vector and the necessary
and sufficient condition for M' to be minimal is that both d.v. fields
of M' be null vectors.

(iv) 1f M is minimal, then the distribution P 1is also involutive and the
integral surfaces of P are totally geodesic in Mn which in this case
is foliate.

(v) Both d.v. fields on ﬁ are U-geodesic directions on M.
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