Internat. J. Math. & Math. Sci. 197
Vol. 8 No. 1 (1985) 197-199

ON TOPOLOGIES OVER RINGS

SYED M. FAKHRUDDIN

Department of Mathematics
University of Petroleum and Minerals
Dhahran, Saudi Arabia

(Received February 4, 1983 and in revised form June 24, 1983)

ABSTRACT. In this note, we show that if a topology F over a ring A satisfies a
certain finiteness condition, then the Gabriel topology G generated by F can be

explicitly constructed and it also satisfies the same finiteness condition.
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1. INTRODUCTION.

Let A be an associative ring with identity. A filter of right ideals F of A
is called a right topology (a pretopology in Stenstrom (1971)), if it is closed for
right quotients by arbitrary elements of A. Suppose F satisfies in addition: If
I is a right ideal of A such that (I:a) ¢ F for every a € J and J e F then
I €F : then F is called a right Gabriel topology over A (an additive topology in
Stenstrom (1971)).

In [1], it is remarked that "if E is a pretopology, then J(E) — the weakest
topology containing E — is the topology corresponding to the heriditary torsion
theory genmerated by {A/I | I ¢ F} ".

In this note, we constructed explicitly J(E) from E , without recourse to the
torsion theory, provided E satisfies a rather natural finiteness condition. It turnms
out that J(E) also satisfies this condition. Moreover, this condition holds for all
topologies over a right Noetherian ring.

Hereafter, by a ring we mean an associative ring with identity, and ideal means
right ideal; hence, all topologies are right topologies.

2. CONSTRUCTION.

Let F be a topology over a ring A and I an ideal. We define the quotient

of I with respect to F to be

(F:I)={a|aecA: (I:a)ecFl (2.1)

One checks easily that (F : I) is an over-ideal of I and it is equal to A precisely

when I € F and that this quotient operation is monotonic in each of the variables.
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Let us write I1 , instead of (F : I) and define inductively In+1 = (In),

and finally I-= égN I, . Then I is an (union of an ascending chain of) ideal
containing I , called the closure of I (with respect to F ).

It is straightforward to verify that if I € F then I-= I, =4 and it is a
preclosure operation in the topological sense, namely I < J implies I < J and
Tnd=InJ for any two ideals I and J of A

Moreover, since (F : (I : A)) = ((F : I) : a) as one can check easily, we
conclude also that (I : a) = (I : a) for an element a € A .

A topology F over A is called sequence-finite, if {In}neN is an ascending
sequence of ideals of A such that their union belongs to F , then In is a member
of F for some n

Suppose the ring A has the property that every topology has, a subbase of
finintely generated ideals -- in particular, if A 1is Noetherian -- then all topolo-
gies over A are sequence-finite [1].

In the case of a sequence-finite topology F , the remarks in the preceding
paragraph concerning the closure of an ideal can be sharpened. Indeed one has that
for an ideal 1 of A , I e F if I e F for some n and the closure of the union
of an ascending sequence of ideals equals the union of the closures of the members of
the chain and consequently, the closure operation is in effect idempotent; namely
I=T1 for an ideal I of A .

Now we have

THEOREM 1. Let A be a ring with identity and F a sequence-finite topology
over A . Then the Gabriel topology G generated by F 1is given by

G=1{I| I is an ideal of A : I ¢ F} (2.2)

and G is also sequence finite.
PROOF. That G 1is a topology follows easily from the preceding discussion.
Suppose now that I is an ideal of A such that for some J in F and for
every aeJ , we have (I : A) e F . Then (I : a) = (I:a)e F for every a

in J . Consequently, G c (F : 1) E,T =T . Hence Te€G . But then I =1¢F

»
so that I € G also, showing G 1is a Gabriel topology.

Suppose {In} .y be an ascending sequence of ideals such that ul, belongs to
G . Then UT; belongs to F . Now the sequence finiteness of F and the defini-
tion of G implies that I, belongs to G for some n .

Let H be a Gabriel topology containing F and I an ideal belong to G , then
I and so I, belongs to F for some n . Therefore IneH . Since H is a
Gabriel topology, 1I,_; and consequently Ig = 1 belongs to H . Thus G < H

The construction above shows that two sequence-finite topologies F and G
generate the same Gabriel topology iff for every I in F , 16 (the closure of I
with respect to G) belongs to G and vice-versa.

Also, if A 1is a Noetherian ring then all Gabriel topologies can be constructed

using the above method.
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In conclusion, we note that without the sequence-finite assumption, the Gabriel
topology G generated by F can be described by a transfinite process as follows:
Let F; = {I | I an ideal and I} = (F : 1) ¢ F} . The F, is a topology

containing F . For a transfinite ordinal « we define
(Fg); if =« =8+1
i Fgz otherwise

Then there exists an ordinal & such that (Ea)l = F; and Fg; 1is then the desired
Gabriel topology generated by F

Our construction above shows that in the presence of sequence-finiteness § is
equal to w .
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