

THE DIOPHANTINE EQUATION $r^2 + r(x+y) = kxy$

W.R. UTZ

Department of Mathematics
University of Missouri-Columbia
Columbia Missouri 65211

(Received February 7, 1984)

ABSTRACT. The Diophantine equation of the title is solved in integers.

KEY WORDS AND PHRASES. *Diophantine equations, integers.*

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE: 10 B 10

1. INTRODUCTION. In Section 3 of this note we will find an infinite family of solutions of

$$r^2 + r(x+y) = kxy, \quad k = 0, \pm 1, \pm 2, \dots \quad (1.1)$$

and, by a proper choice of a parameter, all solutions will be secured.

This equation, for $k = 1$, arises from a geometric problem [1]. For this case, the problem was solved by C. G. Paradine [2]. While the solution of this note agrees with that of Paradine in case $k = 1$, the procedure for solving the problem is different.

Our solution depends upon the special form of a quadratic that occurs within the problem. In Section 2 we formalize the method to be used within the solution given in Section 3.

2. A METHOD FOR SOLVING CERTAIN QUADRATICS.

Suppose that a, b are nonzero integers such that $a + b = s^2$ for some integer s (possibly zero). Since a and b cannot both be negative, assume that $a > 0$.

Then to solve

$$ax^2 + by^2 = z^2 \quad (2.1)$$

in integers we write

$$a(x^2 - y^2) = z^2 - s^2 y^2$$

or

$$a(x-y)(x+y) = (z-sy)(z+sy).$$

If x, y, z are integral solutions, then for integers p, q

$$\frac{ax - ay}{z - sy} = \frac{z + sy}{x + y} = \frac{p}{q} \quad (2.2)$$

where we assume that $(p, q) = 1$.

With due regard for vanishing denominators, (2.2) yields two homogeneous equations in the three variables x, y, z which may be solved for these variables as polynomials in p, q . Any integral multiple, c , of these three functions gives a solution of (2.1) and if c takes on, also, certain rational values (those for which its denominator "cancels"), all solutions of (2.1) are secured.

The solution just described is possible because the determinant on the variables x and z in the two linear equations is $\pm(aq^2 + p^2)$ and so cannot be zero because $a > 0$.

3. THE TITLE EQUATION SOLVED.

We now consider equation (1.1).

If $k = 0$, the equation is trivial.

If $k = -1$, then one sees from (1.1) that $r = -y$ or $r = -x$ and so the solutions for $k = -1$ are given by $(x = a, y = b, r = -a)$ and $(x = a, y = b, r = -b)$ for all integers a, b .

We now let k be any integer except for 0 and -1. From (1.1) we have

$$r = \frac{1}{2}[-(x + y) \pm \sqrt{(x+y)^2 + 4kxy}]$$

and so we require an integer n for which

$$(x + y)^2 + 4kxy = n^2. \quad (3.1)$$

Following the procedure of Section 2, we write (3.1) as

$$(y + (1+2k)x)^2 - (1 + 2k)^2x^2 = n^2 - x^2$$

and then as

$$y(y + 2(1+2k)x) = (n-x)(n+x)$$

from which we secure

$$\frac{y}{n-x} = \frac{n+x}{y+2(1+2k)x} = \frac{p}{q}. \quad (3.2)$$

We pause to consider the denominators of (3.2). If $n = x$, then (using (3.1)) $y = 2(1 + 2k)x$, also. In this case either $y = 0$ and $r = -x$ (which occurred for $k = -1$) or $r^2 + (4k-1)r + (2 + 4k)x^2 = 0$ follows from (3.1). This equation is not possible in non-zero integers because the discriminant of $w^2 + (4k-1)w + (2 + 4k) = 0$ is $(4k+3)^2 - 16$ which is never a square.

Going back to (3.2) we have the equations

$$px + qy = pn$$

$$(q-2p(1+2k))x - py = -qn. \quad (3.3)$$

The determinant on the variables x, y is

$$-p^2 - q^2 + 2pq(1+2k)$$

which cannot be zero for non-zero p, q . This is because the quadratic equation

$$w^2 - 2(1 + 2k)w + 1 = 0$$

has discriminant $4[1 + 2k]^2 - 1$ which cannot be a square for $k \neq 0, -1$.

Solving system (3.3) we secure

$$x = c(q^2 - p^2)$$

$$y = 2cp[(1+2k)p-q]$$

$$r = c[-q^2 + 2(1+k)pq - (1+2k)p^2]$$

or

$$r = -2ckp(q + p)$$

where c is any integer. This will be all solutions of (1.1) provided c is also allowed to range over all rationals with denominators that divide the fundamental solution of (3.3).

Thus, we have proved the following theorem.

Theorem. For $k \neq 0, -1$ all integral solutions of (1.1) are given by

$$x : y : r = [q^2 - p^2] : 2p[(1+2k)p-q] : [-q^2 + 2(1+k)pq - (1+2k)p^2]$$

or

$$x : y : r = [q^2 - p^2] : 2p[(1+2k)p-q] : [-2p(q+p)].$$

In [2] the solution of (1.1) for $k = 1$ was given as

$$x : y : r = ab : (a-b)(2a-b) : b(a-b) \text{ or } a(b-2a).$$

If one lets $a = q - p$, $b = q + p$ then this agrees with the theorem for $k = 1$.

C. V. Gregg [3] stated, with out proof, that if $k = 1$, then

$$x : y : r = m(m-n) : n(m+n) : n(m-n)$$

is a solution of (1.1). This, also, is valid. Let $m = a$, $m - n = b$ to secure one of the solutions of Paradine.

REFERENCES

1. TEE, C. O., Variations on an examination question, Math. Gaz. 34 (1950) 50.
2. PARADINE, C. G., Mathematical note 2497, Math. Gaz. 39 (1955) 60-61.
3. GREGG, C. V., Mathematical note, Math. Gaz. 39 (1955) 141.

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru