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ABSTRACT. We show that each of the schlicht classes of starlike, convex, close-to-
convex and strongly starlike with respect to symmetric points is invariant under the
Hadamard product with the class of convex functions. The influence of certain operators

over these classes is also investigated.
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1. INTRODUCTION.

Let A be the class of analytic functions on the unit disk U = {z: |z| < 1}.
By S we denote those functions in A which are univalent and normalized by £(0) =
£'(0) -1 =0, Let C, S* and K be the usual subclasses of S which are consisting

of the convex, starlike and close-to-convex functions, respectively.

n

n k]

The Hadamard product (convolution) of two power series f£(z) = g a
. P

z
g(z) = T bnzn 1s defined as the power series (f*g) (z) = g anbnzn lea and
Schoenberg [9] have conjectured that f * g is in C whenever both f and g are in
C. This conjecture was finally shown to be true by Ruscheweyh and Sheil-Small [12].
THEOREM A (Ruscheweyh and Sheil-Small): Let h be in C. If f is in C,S* or K
then h * f is in C, S* or K respectively.

The proof of Theorem A requires a key lemma that turned out to be beautiful in its
simplicity and powerful in its applicability to various problems. We state this key
lemma of Ruscheweyh and Sheil-Small in the form stated and proved by Barnmard and
Kellogg in [11].

LEMMA A. Let ¢ and g be analytic in |z]| < 1 with ¢(0)

$'(0)g'(0) # 0. Suppose that for each a(|a| = 1) and o(|o|

g(0) = 0 and

1) we have
[p* (2% g1(2) # 0 (1.1)

on 0 < |z| ~r < 1. Then for each F in A the image of |z| < r under
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(9 * Fg)/(¢ * g) 1is a subset of the convex hull of F(U).
REMARK 1. 1In [12], it was shown that condition [1] is satisfied for all =z in U
whenever ¢ is in C and g is in S%*,
A function f - A 1is said to be starlike with respect to symmetric points in

U, denoted f « SS*, if and only if

zf'(z)
f(z) - f(-2z)
This class was introduced by Sakaguchi [13],
REMARK 2. Sakaguchi has shown that C»SS*CK. Further, if f ¢ Ss* then
(£(z) - £(-2z))/2 1is in S*,

We say that f 1is strongly starlike of order X, with respect to symmetric

Re > 0, for all z in U. (1.2)

points in U, denoted f - SS*(X), if and only if

]arg{??fjiél%%:zy}l - l;—, 0<x <1, zeU (1.3)
This class was introduced by Padmanabhan and Thangamant [81].

Das and Singh [4] introduced the classes of function f which are convex with
respect to symmetric points in U, denoted f ¢ CS, and those which are close-to-
convex with respect to symmetric points, denoted f ¢ KS as follows: f ~ Cs if
and only if

z(2£'(z))"
2f'(2z) + zf'(-2)

Re >0, z - U, (1.4)

and f -~ KS if and only if there exists K ¢ Ss* such that

zf'(z)

Re ¥ - k(=2

>0, z < U, (1.5)

REMARK 3. In [4], it was shown that both Cs and KS are subsets of S and
furthermore, f ¢ Cs if and only if zf' ¢ SS*.

The purpose of this note is to investigate these subclasses of S which are
symmetric with respect to points in U via the Hadamard products. 1In section 2, we
state our main theorem which shows that these classes are invariant under the
Hadamard product with convex functions. In section 3, we use the results of section
2 and an observation made in [1] to obtain results concerning the radii of these
classes under the influence of certain well known operators.

2. MAIN RESULTS

The elegant technique and results of Ruscheweyh and Sheil-Small allow us to
produce a theorem similar to Theorem A for the classes Ss*, Cs’ KS and SS*(X),
0 <A <1,

THEOREM 1. Let h e C, If f is in S *, C , K or S *(A), 0 <X <1, then h * f
s > s s ’

s
co s * « .

is in SS R CS, KS or SS (A\) respectively.
PROOF. The proof of the four cases requires an application of Lemma A. In order to
apply this lemma, we need to identify the convex function ¢ and the starlike
function g for the different cases.

Case 1. Let f ¢ SS* and h € C. Then g(z) = f(z) - £(-2) I

*
3 S by Remark 2. Thus
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condition (1,1)is satisfied according to Remark 1, i.e.,

1 + acz, -
[h * (5—,)8l(@) # 0
for all z in U. Now let
__z f'(2)
F(z) = HOEEI{E (1.6)

Applying Lemma A with F as given in(2.1)we obtain

z £'(z) . (f(2) - f(-2z))

B YA ¢ O RN { E)) 2
Ny o+ CE_ D,
h(z) * z £'(z) z(h * £)'(z)

TTh* (2 - (h * )(-z2)  (h * £)(2) - (h * £)(-2)
which is contained in the convex hull of F in U. This implies

z(L * £)'(2)
(h * £)(z) - (h * f)(-2)

Re >0, z €U,

or h* f ¢ SS* according to (1.2),
CASE 2. Let f ¢ Cs and h ¢ C. This case follows immediately from Remark 3 and
Case 1 above.

CASE 3, Let f € Ks and h € C. Let K(z) be the associated function appearing in

(1.5). Then according to Remark 2 g(z) = Eﬁil.%.&i:il € S*, Thus condition (1.1) is
satisfied for h and g of this case. Applying Lemma A with
__z f'(2)
F2) = ¥y — k(D)

we easily get after some simplification as in Case 1 that

z(h * £)'(2)
(h * K)(z) - (h * K)(-2)

is contained in the convex hull of F. That is

z(h * £)'(2)
(h * K)(z) - (h * K)(-2)

Re >0, z e U.

Thus h * f ¢ KS provided h * K ¢ SS*. However, the latter is true as seen by Case 1.
CASE 4. Let f ¢ Ss*(k), 0 <XA<1,and he C. It is clear from (1.3) and (l.2) that
Ss*(k) ‘ Ss* for all 0 < A < 1. Let g and F as defined in Case 1, then, as in the

proof of Case 1,
z(h * £)'(2)
(h * £)(z) - (h * £)(-2)

lies in the convex hull of F. This means

|ar z(h * £)'(2) |
Eth * £)(2) - (h * £)(-2)

<Am/2, 0 <X <1,

Thus h * f ¢ SS*(X) by (1.3). This completes the proof of Theorem 1.
3. APPLICATIONS

For X A, let rC(X) denote the largest positive number so that every f ¢ X
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is convex in |zl < rc(X). Consequently, the conclusion of Theorem 1 remains valid
for h * f in the disk |z| < rc(X) for each h ¢ X and every f in the given four
classes. This observation was first used effectively by Barnard and Kellogg in [1]

to unify and reduce the amount of work usually associated with such problems. Let

® y+n n Y z 1 z
= = +
N T v R A R L

H(z) = & X I i 2", and

n=1 Y

n
® 1 - x n 1 1 - xz

P(z) = I T~ n 2 =TT lo 1 i

n=1

where Rey > 0, lx[ 21, x# 1 and for all z in U. The operators Bj‘ j=1,2,3,

defined below have been studied by many authors. Let

y f(2) + z £'(2)
1+ vy

B, £(2) S (h* D (), Rey 0,

Y

- V4 -
B,£(2) Lty 2o lecnyae - (H * £)(2), Rey = 0,
z 0

2 f(t) - f(xt) _ .
B3f(z) = g 4 T dt - (P * £)(z), |x| <1, x # 1.
For example, the operator B, is due to Livingston [7] when y =1, B, fis due to
Libera [5] when y = 1 while B3 was first used by Pommerenke in [10], see also [2],

i3], [6], [11]. Consequently, the operators B,, j = 1,2,3, preserve the classes
* * i
SS s Cs’ Ks or SS (A) up to rc(hy)’ rc(Hy) or rC(P) as mentioned at the start of
this section. However, rc(Hy) = 1, Rey 2 0 was shown by Ruscheweyh [11], and
rc(P) = 1 was shown by Pommerenke [10]. We need only to calculate rc(hY). From the

definition of hY we get

1-x
h'(2) = CIEY T 1t
Y 1 - 2)3 (1 -2)3
where c¢ = 1-y .  Thus
1+ vy
"
1+ z hj (2) _2+z _ 1
h '(2) 1 -2z 1+ cz '
Y
This implies
z h '"(z)
Y 2-r _ 1 _
Re(1 + hy'(z) ) = 1+r 1-Jc|r ozl =

This shows that rc(hY) is the smallest positive number r satisfying

lclrz -2+ |ehr+1=0

or
1
rc(hY) = .

l+1cl+b’l+ic+c~'
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Finally, we have the following theorem.

THEOREM 2. If f is in S *, C , K or S *(1), 0 <X <1, then
s s s s ’ ’

i) ij is in SS*, Cs’ KS or SS*(X), respectively for each j = 2,3, and

ii) B.f is in SS*, Ce» KS or SS*(X) respectively for

1
lz] < (h) =1/ + |c| +v1+ |c| + |c|?), = 1-y
ey ’ 1L+y
Rey 2 0,
REMARK 4. Theorem 2 part (i) was shown in [8] for the class Ss*(%) only., Prart (i)
with y =1 and x = -1 was shown in [4] for the classes Ss*, CS and Ks.
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