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ABSTRACT. I. Schur's study of simple algebras around the turn of the century, and
subsequent investigations by R. Brauer, E. Witt and others, were later reformulated

in terms of what is now called the Schur subgroup of the Brauer group. During the
last twenty years this group has generated substantial interest and numerous palatable
results have ensued. Among these is the discovery that elements of the Schur group
satisfy uniform distribution of Hasse invariants. It is the purpose of this paper

to continue an investigation of the latter concept and to highlight certain applica-
tions of these results, not only to the Schur group, but also to embeddings of simple

algebras and extensions of automorphisms, among others.
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1. INTRODUCTION:

For a field K of characteristic zero, the Schur subgroup S(K) of the Brauer group
B(K) consists of all equivalence classes [A] which contain a K-isomorphic copy of a
simple summand of the group algebra KG for some finite group G. We restrict our atten-
tion to fields of characteristic zero since S(K) is trivial when K has non-zero char-
acteristic. This follows from Weddeburn's well-known theorem which states that a
finite-dimensional division algebra over a finite field is itself a field.

It was shown in Benard et al [1, Theorem 1, p.380] that when K/Q is finite abelian
and [A] € S(K) with index m then: (1.1) ém, a primitive mth root of unity, is in K,
and (1.2) suppose o € G(K/Q), the Galois group of K/Q, with GZ = ézc. If P is K-prime
then the following relationship holds between the Hasse invariants of A:
invP(A) = bginvPO(A) (mod 1).

Algebras satisfying (1.1)-(1.2) are called algebras with uniformly distributed

Hasse invariants. Such algebras can be shown to form a subgroup U(K) of B(K), and

therefore we have S(K) as a subgroup of U(K). For K/Q abelian we have studied the
relationship between S(K) and U(K) in Mollin [2,9]. However the study of U(K) has

proved valuable from several vantage points not directly related to the group itself.
In particular certain tools have been developed in the aforementioned papers which have

proved to be valuable in answering related open questions. Some examples are as follows. In
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Mollin [10] we proved a conjecture which stated that if the center of a finite dimen-
sional division algebra, D, contains no nontrivial odd order roots of unity then all
finite odd order subgroups of the multiplicative group of D are cyclic. This problem
is related to a conjecture of I.N. Heistein and results of S. Amitsur. Moreover

in Mollin [11] we provided sufficient conditions for the existence of a
splitting field L of an absolutely irreducible character x of a finite group of
exponent n, such that L ¢ Q(Gn) and IL:Q(X)I = mQ(X),the Schur index of X over Q.
This result is a natural outcropping of R. Brauer's well-known theorem stating that
Q(En) splits X. Furthermore, in Mollin [12 - 14] we used the aforementioned techniques
to answer specific questions pertaining to the structures of division algebras, the
Schur index, and class field theory proper.

Given the above, it is natural to seek a more general context for uniform distri-
bution. In Mollin [15] we observed that UF(K), for K/F a finite Galois extension of
number fields, could be defined as those elements of B(K) satisfying (1.1) and (.2),
where Q is replaced by F. Moreover, as with the abelian case, we have that UF(K) is
a subgroup of B(K) and S(K) is again a subgroup of UF(K)' Furthermore another property
which was proved in Bernard [16] to hold for S(K) carries over to UF(K). We isolate
this property since it will be of independent interest later: (1.3) Let K/F be normal
and suppose [A] € UF(K). 1f P and Q are K-primes above an F-prime P then A ek K; and
A xk Ka have the“same index, where Kﬁ (respectively Ké) denotes the complefion of K at
P (respectively ). The common value of indices A 8 Kp for all K-primes P above P is

called the P-local index of A, denoted indP(A).

Now we ask whether UF(K) may somehow be salvaged when K/F is any (not necessarily
normal) extension of number fields. We define UF(K) to consist of those [A] € B(K)
such that [A Qk L] € UF(L)‘ where L is the normal closure of K over F. We call UF(K)

the group of algebras with uniformly distributed invariants over K relative to F. It

is straightforward to check that UF(K) is a subgroup of B(K) and that S(K) is in turn
a subgroup of UF(K)' The latter fact follows from the fact that S(K) Xk L is in UF(L)'
However when K # L, UF(K) differs markedly from UF(L)' In particular the following
example shows that (1.3) fails to hold for UF(K).

EXAMPLE 1.4. Let K = Q(G,Gq) where 6 is a real root of f(x) = x3 - 2 and let

F = Q. Then the normal closure of K over F is L = Q(6,¢€ It can be verified that

).
12
the prime 29 splits into four unramified K-primes Pl’PZ’P3 and Pu with Pi for

i = 1,2 having inertial degrees equal to one over Q, whereas Pi for i = 3,4 have
inertial degrees equal to two over Q.

We now define a central simple K-algebra, A, as follows: let invP (A) = 1/2 for
i
i= 3,43 invP (A) = 1/4 and invP (A) = 3/4 while invo(A) = 0 for all K-primes Q # Pi
1 2 ~

where i = 1,2,3,4. By the Hasse sum theorem (see Reiner [17]) we are guaranteed that
[A] GAB(K). Now let ﬁi be an L-prime above Pi for i = 1,2,3,4. It can be verified
that Pi for i = 1,2 have inertial degrees equal to 2 in L over K and 5i for i = 3,4
have inertial degrees equal to 1 in L over K. Hence we obtain that invﬁ (A Gk L)
=1/2 for i = 1,2,3,4. Therefore by (1.1)-(.2) we have that [A @k L] € UQ(L), and so

[A] € U (K). However the index of A » K is four, whereas the index of A ®,6 K
Q K "P, K Py
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is two, contradicting (1.3). This completes the example.

The first main result of this paper is to provide a generalization of a theorem
of E. Witt using UF(K) as a tool. From this result we will see that (1.1)-(1.2) fail to
hold for UF(K) when K # L. Furthermore we use this generalized Witt theorem to develop
further properties of UF(K). Moreover we obtain necessary and sufficient conditions,
in terms of the arithmetic of the fields under consideration, for an element to exist
in UF(K) with a given index. Several related properties are also developed.

Finally we generalize the concept of K-adequacy introduced in Fein et al [18] and
link it to UF(K) via the arithmetic of the underlying fields in a sequence of results.
2. BASIC REFERENCES

For basic properties of number fields used in this paper we refer the reader to
Marcus [19]. For fundamental results concerning the Schur subgroup of the Brauer
group the reader should consult Yamada [20]. For information pertaining to properties
of algebras used herein, and especially the classification of the Brauer group of a
number field via Hasse invariants see the beautifully written Reiner [17]. Any
concepts not described in greater detail in this paper may be found in earlier work
Mollin [2 - 15].

3. UNIFORM DISTRIBUTION

THEOREM 3.1. Suppose [A] € UF(K) where K/F is an extension of number fields.

Let P be a K-prime with invP(A) > 0, and let P be an L-prime above P where L is the
normal closure of K/F. Set g = g.c.d. (m, ,L;:KPI)’ where m is the index of A Ny KP.

Then ‘m/g is in K and P N F is completely split in F(¢ ).

m/g
PROOF. Let o € G(L/K) and let P be an L-prime with P N K = P. Therefore

FENIPN _ PPN g _ /b , .
1nvP(A Gk L) =b 1nvP0(A Gk L) where ém = Gmo. Hence:

m Q

iLﬁ:KPI invP(A) bOILﬁo:KP[invP(A) (mod 1). Thus bo = 1 (mod m/g), and so o fixes
ém/g for all o € G(L/K); i.e. Gm/ is in K.

Since we have: invﬁ(A Sk L) = ILﬁ:KP|invP(A) (mod 1) then indP(A 8k L) = m/g.
Hence by Mollin [15, Theorem 2.3, p.251], PN F is completely split in F(ém/g).

Q.E.D.

For completeness sake we state Witt's results [21, Satz 10, Satz 11, p.243] in
succinct form as a corollary which is immediate from the theorem.

COROLLARY 3.2. If K/Q is finite abelian, [A] € S(K) and p is an odd prime with
indp(A) =m then p =1 (mod m). If p = 2 then indp(A) =1 or 2.

We maintain the notation of the Theorem 3.1 in the following results. The first

result, which is immediate, generalizes Mollin [15, Corollary 2.4, p.254].

COROLLARY 3.3 Let m/g = pa where p is a prime and suppose Gpn is the largest
p-power root of unity in K. If P is completely split in F(Gpc) but not in F(Gpc+1)
then a < min{n,c}.

The next result which will prove to be useful later in the paper generalizes
Mollin [15, Corollary 2.5, p.254].

COROLLARY 3.4. Suppose P and Q are K-primes with PN F = 0N F and IL5:KP| =
|L85K0| where P (respectively Q) is any L-prime above P(respectively Q). If
[A] € UF(K) then invP(A) = ian(A) if and only if P N F(Em/g) =0nN F(Gm/g).
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PROOF. Suppose ¢ € G(L/F) such that P° = Q. We have invE(A % L) = b
NP o _ b
invP (A R L) (mod 1) where em/g = €m7g . Thus we have by Mollin [4, (2.3), p.276]
that: ILP:KpllnvP(A) = bc|LQ:KQ!1an(A) (mod 1).
Since |L§:KP| = ILQ:KQl then we have that invP(A) = ian(A) if and only if b0 =1
(mod m/g) which in turn holds if and only if ¢ ¢ G(L/F((m/g)). However by theorem
3.1, PN F is completely split in F(Gm/g). Hence o € G(L/F(Gm/g)) if and only if
PNF =7 . .E.D.

n (Em/g) N F(e /g) Q.E.D

We note that Theorem 3.1 shows that (l1.1) does not hold tor UF(K) when K/F is non-

normal. Moreover (1.2 does not generalize to UF(K) where o of (1.1) is interpreted as
an embedding of K into the complex field C. This may be illustrated by considering
example (1.4) with o € C(L/K) and P] = P . However invp () = 3/4 { invp (A)

= 1/2 (mod 1).

Now, Theorem 3.1 is the "best possible' generalization of Witt's results in the
sense that we cannot hope for P N F to be completely split in F(Gn) for m > n > m/g
in general. The following example depicts this fact.

EXAMPLE 3.5. Let ¢ be a real root of f(x) = x!® - 2, and let F = Q(u). If
K =Q(i,¢;) then L = Q(H,Gle) is the normal closure of K over F. Let P be an F-prime
above 5. Then it can be verified that P splits into two unramified K-primes Pl and
P7 each having inertial degree two over P. Define: invﬁl(A) = 1/8, and invﬁ2(A) =

P

—i/8 while inva(A) = 0 for all K-primes 0 # ﬁl,ﬁz. Then by the Hasse sum Theorem
[A] € B(K). Now since there exists exactly one L-prime Qi above Pi for i = 1,2, each
with inertial degree equal to 2 then invél(A & L) = 1/4 and invéZ(A & L) = -1/4.
Thus by construction [A] € UF(K)' However, although the index of A 8k Kﬁ is 8, P is
not completely split in F(€g) = K. This completes the example.

It is natural to ask whether the converse of Theorem 3.1 holds since we would
then have a criterion, in terms of the arithmetic of K and F, for the existence of an
element in UF(K). Unfortunately the converse fails to hold as the following counter-
example illustrates.

EXAMPLE 3.6. Let K = Q(9;), F=0Q, and L = Q(0,,€3) where 0, is a real root of
f(x) = x> - 2 and 0, is a real root of g(x) = x3 - 11. Then 2 splits into two K-primes
P, and P, with inertial degrees one and two respectively over F. Hence P; splits into
two L-primes ﬁl and ﬁg each with inertial degree 2 over K; and P, has one L-prime ﬁ3
above it with inertial degree one over K. Now, if there exists [A] ¢ UF(K) with
invPZ(A) = 1/2 then [A 8 L] € U(L). Therefore: invaa(A @ L) = |L£3: szlinvPZ(A)
= inva(A) = 1/2 (mod 1). Therefore indz(A Sk L) = 2 is forced. Thus:

invﬁ‘(A Qk L) = 1/2 for i = 1,2,3. However by Mollin [15, Lemma 2.8, p.259] we must
i3

have Z invﬁ (A Qk L) = 0 (mod 1), a contradiction which completes the example.
i=1 i
Now we demonstrate that under a suitable restriction we do get sufficient condi-

tions in terms of the arithmetic of F.K and L to guarantee the existence of an element
in U .
in F(K)

THEOREM 3.7. Let L be the normal closure of K/F, an extension of number fields.

Suppose that Gn is the largest root of unity in F with n £ 2 (mod 4). If we have:
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1) Gm is in K where n divides m and;
(2) ﬁ is a K-prime such that PAF="Pis completely split in F(¢€ ), and

(m/n if m > n
(3) g.c.d. (r, |L:K m ifm=n

then there exists [A] € UF(K) with the index of A Gk Kﬁ equal to r.

) =1, where r =

PROOF. By [15, Theorem 2.7, p.256] we have the existence of an element [B] ¢
UF(L) with indP(B) = r. Now, let I(B) = {F-primes P: indP(B) > 1}. Supposc that
inVB(B) = a(?)/r where Q is an L-prime above P € I(B). By Mollin [15, Corollary 2.5,
p.254] we have that, for any L-prime R such that NNK-= RNK = 0 then, inv (B)
a(é)/r. Therefore we set a(é) = a(”) for all such L-primes 0 above a K- prlme 0 which
lies above a given P € I(B). Now we define a K-central simple algebra A as follows.
For each P ¢ I(B), let 1nv0(A) = a(a)P(a)/r, for all K-primes : above P, and let
1nv a(A) = 0 for all K-primes S not above primes in I(B), where ?(0) ]L K|/| : ”|.
By (3) of the hypothesis we have that the index of A @k K is equal to r. Moreover.

0- Ly invg(B) = ) 7 oa®/r
Pe1(B) O|P = Pe1(B) O|P

= 7Y a@e@ir: ¥ 7 invj(A) (mod 1).
Pe1(B) Q[P pers) Ofp -
Therefore [A] € B(K). Now, if o ¢ G(L/F) then:
invy(A @ L) = [L:k|a(@)/r = |L:K|inv;(B)

ro b
—

~

A . o _ Lo
[L.K[b01an?(B) = IL.K|bGa(Q )/t = bolana(A ®, L) (mod 1)

where Qﬂ is a K-prime below éo. Hence [A] € UF(K). Q.E.D.
We note that Theorem 3.7 generalizes Mollin [15, Theorem 2.7, p.256].
The final result of this section is an interesting result which generalizes
Mollin [15, Lemma 3.1, p.262] and simplifies the proof thereof. Moreover we note
that it is possible to use the following result to generalize Mollin [15, Theorem

2.10, p.260].

THEOREM 3.8. Let K /F for i = 1,2 be extensions of number fields with N, being
the normal closure of Ky /F and N being the normal closure of K, K,/F. If [A] € U (Xy)
with index m and g.c.d. (m:lN1N2~N2|) = 1 then [A le K;K;] ¢ U (K KZ)

b

m/g
Denote an extension of ¢ to G(NjN,/F) by o. Since [A ® NI] €U (Nl) implies that

[A 8k NINZ] €U (NlNz) then we have 1nvP(A @ K, NiNp) = b 1nvPo(A ® NiN2) (mod 1)
where P is an N N2 prime. Therefore I(N Nz)p (N ) (1nvP(A ® N,)

.

PROOF. Let g = g.c.d. (m,|NjN2:K;|), and let o € G(N/F) with em/g =€

= b[(NlNz)Po (Nz)PcllnvPG(A ® X, N;) (mod 1). But since NINZ/Nz and N,/F are normal
and g.c.d. (m,INlNQ.Nzl) = 1 then invP(A le N,) = b invpo(A ®K1 N,) (mod 1). This
means [A @Kl Ny] € UF(NZ);i.e. [A QKl KK, € UF(KlKZ)' Q.E.D.
4. EMBEDDINGS IN SIMPLE ALGEBRAS AND EXTENSIONS OF AUTOMORPHISMS.

Let K/F be an extension of number fields, and let n be a fixed positive integer.
If D is a division algebra with [D] € B(K) then we say that D is (n,F)-adequate if
there exists an F-division algebra B with F-I ¢ D ¢ Mn(B) where I is the identity
matrix of Mn(B), the full ring of n x n matrices with entries from B. This concept
generalizes that of Fein et al [18] which is the n = 1 case. We now proceed to obtain

results linking UF(K) and (n,F)-adequacy via the arithmetic of F and K. The first
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result is a generalization of Fein [22, Proposition 3, p.438].

LEMMA 4.1. Let K/F be an extension of number fields with L being the normal
closure of K/F. Suppose [D] € B(K) where D is a division ring of index m such that
g.c.d. (m,IL:K|) = 1. If D is (n,F)-adequate for a given positive integer n then
inv;(D 8& L) = invé(D @k L) for all L-vorimes 5 and Q such that 5 NF-= Q n F.

PROOF. Let A = Mn(B) where D is embedded in A. If C = CA(K) denotes the centra-
lizer of K in A then by Reiner [17, Corollary 7.14, p.96] we have [C] = [B @% K].
Moreover by Albert [23, Theorem 13, p.53] we have [C] = [D @k D;] where D; is a
division ring with [D;] € B(K). Thus [B 8% K] = [D Gk D;] which implies [B ®F L] =
[D Gk LJ[Dl Gk L}. Since L/F is normal then it follows from Mollin [4, (2.2)-(2.3),
p.276] that: invﬁ(D Qk L) - invé(D &K L) = invé(Dl Gk L) - inv';;(D1 8k L). Since
g.c.d. (|L:K|,m) = 1 then invp(D ® L) # ian(D ® L) implies g.c.d. (|p:k], D) :K])
# 1 which contradicts that D Qk D, is a division algebra, (see (Reiner [17].) We
note that the above proof essentially uses the idea of Fein [22].

Q.E.D.
Now we use Lemma 4.1 to obtain a generalization of Mollin [15, Theorem 3.2, p.263].

THEOREM 4.2. Suppose Ki/F for i = 1,2 are extensions of number fields with N,
being the normal closure of KI/F and assume that K1K2/F is normal. Suppose D is a
division algebra with [D] € UF(KI)’ and which has index m. Suppose D is (n,Kz)-
adequate for a given positive integer n such that g.c.d. (m,|N1K2:KlK2]) =1. If g =
g.c.d. (INI:Kli,m) then Em/g is in K,.

PROOF. By Theorem 3.8 we have that [D le KiK,] € UF(KIKZ), and so we have
UF(K1K2) c sz(Kle). Now let P and Q be any two K K,-primes with PN K, = Q N K.
Now we invoke Lemma 4.1 to get that invP(D le KiKp) = ian(D le K1Ky). Therefore
since KIKZ/F is normal then we may invoke Corollary 3.4 to get P N Kz(ém/g) =
an Kz(ém/g). However P and Q were arbitrarily chosen subject only to P N K,= 2 N K,.
By Theorem 3.1, P N K2 is completely split in K2(€m/g). Hence em/g is in Kz‘ Q.E.D.

We note that immediate consequences of Theorem 4.2 are Mollin [8, Theorem 3.1,
p-175], and Fein et al [24, Theorem 1, p.305]. Moreover the above proof is shorter
and more straightforward than the latter two cases.

Finally we present the following generalization of Mollin [10, Theorem 4.5,
p.245]. The result is virtually immediate but we present it since it may be of
independent interest. Aut(K) (resp. Aut(A)) refers to the automorphism group of
K(resp. A).

THEOREM 4.3. Let K/F be an extension of number fields and assume that the fixed
field of Aut(K) is contained in F. If [A] ¢ UF(K) with index n then o € Aut(K)
extends to Aut(A) if and only if o fixes Gn.

PROOF. Since UF,(K) c UF(K) where F' is the fixed field of Aut(K) then the
result follows immediately from Mollin [10, Theorem 4.5, p.245]. Q.E.D.

We conclude with a note that it is an open question as to whether other results may
be generalized to UF(K) when K/F is not normal. Some such examples are Mollin [6,
Theorem 4.5, p.476], [7, Theorem 2.1, p.202], [2, Theorem 1.2, p.262], and [12,
Theorem 1, p.1075]. It should also be noted that recently Greenfield [25] has done

some work on uniform distribution from a different perspective modelled after Mollin [15].
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