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Let H be the class of functions f(z) of the form f(z)= z+∑+∞
k=2akzk, which are analytic

in the unit disk U = {z; |z| < 1}. In this paper, we introduce a new subclass Bλ(µ,α,ρ)
of H and study its inclusion relations, the condition of univalency, and covering theorem.
The results obtained include the related results of some authors as their special case. We
also get some new results.
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1. Introduction. Let H be the class of functions of the form

f(z)= z+
+∞∑
k=2

akzk (1.1)

which are analytic in the unit disk U = {z; |z| < 1}. Let S be the subclass of H con-

sisting of univalent functions.

For the function f(z)=∑+∞
k=1akzk and g(z)=∑+∞

k=1bkzk, let (f ∗g)(z) denote the

Hadamard product or convolution of f(z) and g(z), defined by

(f ∗g)(z)=
+∞∑
k=1

akbkzk. (1.2)

Now define the function φ(a,c;z) by

φ(a,c;z)=
+∞∑
k=0

(a)k
(c)k

zk+1, (c ≠ 0,−1,−2, . . . , z ∈U), (1.3)

where

(λ)k = Γ(λ+k)Γ(λ)
=

1, k= 0,

λ(λ+1)···(λ+k−1), k∈N = {1,2, . . .}. (1.4)

It follows from [4] that

z
[
φ(c,c+1)

]′ = cφ(c+1,c+1)−(c−1)φ(c,c+1). (1.5)
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Carlson and Shaffer [2] defined a linear operator L(a,c) onH by using the Hadamard

product

L(a,c)f =φ(a,c;z)∗f(z), f ∈H. (1.6)

It is known in [2] that L(a,c)mapsH into itself. If a≠ 0,−1,−2, . . . , then L(a,c) has

a continuous inverse L(c,a). Clearly, L(a,a) is the unit operator. Also, if c > a > 0,

then L(a,c) has the integral representation

L(a,c)f (z)= Γ(c)
Γ(a)Γ(c−a)

∫ 1

0
ua−2(1−u)c−a−1f(uz)du. (1.7)

Ruscheweyh [7] introduced an operator Dλ :H →H defined by the Hadamard prod-

uct or convolution

Dλf(z)= z
(1−z)λ+1

∗f(z), (λ >−1, z ∈U), (1.8)

which implies that

Dnf(z)= z
(
zn−1f(z)

)(n)
n!

,
(
n∈N0 = {0,1,2, . . .}

)
,

Dλf(z)= L(λ+1,1)f (z).
(1.9)

Assume α > 0, µ > 0, λ > −1, ρ < 1, a function p(z) = 1+p1z+p2z2+··· is said

to be in the class Pρ if and only if p(z) is analytic in the unit disk U and Rep(z) > ρ,

z ∈U ; a function f(z)∈H is said to be in the class Bλ(µ,α,ρ) if and only if it satisfies

Re

[
(1−µ)

(
Dλf(z)
z

)α
+µ(Dλf(z))′(Dλf(z)

z

)α−1
]
> ρ, z ∈U, (1.10)

where the power are understood as principle values. Below we apply this agreement. It

is obvious that the subclass B0(1,α,0) is the subclass of Bazilevič functions, which is

the subclass of univalent functions S, let B(α,ρ)≡ B0(1,α,ρ). The subclass B0(1,α,ρ)
(0≤ ρ < 1) has been studied by Bazilevič [1], Singh [8], respectively. B0(0,α,ρ) (ρ < 1)
has been studied by Liu [5]. The subclass B0(λ,1,ρ) (0 ≤ ρ < 1) has been studied by

Chichra [3], Ding et al. [4], respectively.

In this paper, we study the properties of Bλ(µ,α,ρ). The results obtained generalize

the related works of some authors. We also obtained some new univalent criterions.

2. Some lemmas

Lemma 2.1 [4]. Let ρ < 1, 0<u< 1, F(z)∈ Pρ , then for |z| = r < 1,

Re
[
F(z)−F(uz)]≥ 2(1−ρ)(u−1)r

(1+r)(1+ur) , (2.1)

and the inequality is sharp.



ON THE UNIVALENCY FOR CERTAIN SUBCLASS OF ANALYTIC . . . 569

Lemma 2.2. Let c > 0, µ > 0, ρ < 1, p(z)= 1+p1z+p2z2+··· be analytic in U . If

Re
[
p(z)+cµzp′(z)]> ρ, z ∈U, (2.2)

then for |z| = r < 1,

Re
[
p(z)+czp′(z)]≥ 2ρ−1+ 2(1−ρ)

µ(1+r) +2(1−ρ)
(

1− 1
µ

)
1
cµ

∫ 1

0

u1/cµ−1

1+ur du,

Re
[
p(z)+czp′(z)]≥ 2ρ−1+ 1−ρ

µ
+2(1−ρ)

(
1− 1

µ

)
1
cµ

∫ 1

0

u1/cµ−1

1+u du,

(2.3)

and these results are sharp.

Proof. Set F(z)= p(z)+cµzp′(z), then it follows from (2.2) that F(z)∈ Pρ , and

zF(z)= (1−cµ)[zp(z)]+cµz[zp(z)]′ = L( 1
cµ
+1,

1
cµ

)[
zp(z)

]
(2.4)

that is,

zp(z)= L
(

1
cµ
,

1
cµ
+1

)[
zF(z)

]= 1
cµ

∫ 1

0
u1/cµ−1zF(uz)du. (2.5)

Let b = 1/cµ, then

p(z)= b
∫ 1

0
ub−1F(uz)du. (2.6)

According to (1.5) and (2.5), we get

z
[
zp(z)

]′ = [
z
(
φ(b,b+1;z)

)′]∗[zF(z)]
= bL(b+1,b+1)

[
zF(z)

]−(b−1)L(b,b+1)
[
zF(z)

]

= bzF(z)−b(b−1)z
∫ 1

0
ub−1F(uz)du.

(2.7)

On the other hand, we have

[
zp(z)

]′ = p(z)+zp′(z). (2.8)

Thus

p(z)+czp′(z)
= (1−c)p(z)+c[zp(z)]′
= bcF(z)+b(1−c)

∫ 1

0
ub−1F(uz)du−bc(b−1)z

∫ 1

0
ub−1F(uz)du

= bcF(z)+b(1−bc)
∫ 1

0
ub−1F(uz)du.

(2.9)
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If µ > 1, then 0< bc = 1/µ < 1, and

Re
[
p(z)+czp′(z)]= bcRe

[
F(z)

]+b(1−bc)
∫ 1

0
ub−1 Re

[
F(uz)

]
du

≥ bc · 1−(1−2ρ)r
1+r +b(1−bc)

∫ 1

0
ub−1 1−(1−2ρ)ur

1+ur du

= 2ρ−1+ 2(1−ρ)
µ(1+r) +2(1−ρ)

(
1− 1

µ

)
1
cµ

∫ 1

0

u1/cµ−1

1+ur du.

(2.10)

If 0< µ ≤ 1, then bc = 1/µ ≥ 1, so that it follows from Lemma 2.1 and (2.9) that

Re
[
p(z)+czp′(z)]= Re

[
bcF(z)−b(bc−1)

∫ 1

0
ub−1F(uz)du

]

= ReF(z)+b(bc−1)
∫ 1

0
ub−1 Re

[
F(z)−F(uz)]du

≥ 1−(1−2ρ)r
1+r +b(bc−1)

∫ 1

0
ub−1 2(1−ρ)(u−1)r

(1+r)(1+ur) du

= 2ρ−1+ 2(1−ρ)
µ(1+r) +2(1−ρ)

(
1− 1

µ

)
1
cµ

∫ 1

0

u1/cµ−1

1+ur du.

(2.11)

Since the function

2ρ−1+ 2(1−ρ)
µ(1+r) +2(1−ρ)

(
1− 1

µ

)
1
cµ

∫ 1

0

u1/cµ−1

1+ur du (2.12)

is decreasing with respect to r , therefore

Re
[
p(z)+czp′(z)]≥ 2ρ−1+ 1−ρ

µ
+2(1−ρ)

(
1− 1

µ

)
1
cµ

∫ 1

0

u1/cµ−1

1+u du. (2.13)

Note that

pµ,c,ρ(z)= 1
cµ

∫ 1

0
u1/cµ−1 1+(1−2ρ)uz

1−uz du, (2.14)

satisfies (2.2), we obtain that the inequalities (2.3) are sharp.

Lemma 2.3 [6]. Let p(z)= 1+p1z+··· ∈ Pρ , then |pk| ≤ 2−2ρ, k= 1,2, . . . .

3. Main results

Theorem 3.1. Let α> 0, β > 0, λ≥ 0, f(z)∈H and

Re

[(
Dλf(z)

)′(Dλf(z)
z

)α−1
]
>

λ
β+λ, z ∈U, (3.1)

then f(z) is univalent in U , that is, Bλ(1,α,λ/(β+λ))⊂ B(α,0).
Proof. Since λ/(β+λ)≥ 0, we have

B
(
α,

λ
β+λ

)
⊂ B(α,0). (3.2)
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Let T = Dλf(z), then T is a linear and homeomorphism from Bλ(1,α,λ/(β+λ))
onto B(α,λ/(β+λ)), therefore it follows from (3.2) that

Bλ
(

1,α,
λ

β+λ
)
= T−1B

(
α,

λ
β+λ

)
⊂ T−1B(α,0)= B0(1,α,0)≡ B(α,0). (3.3)

Hence the proof is completed.

Since limβ→∞λ/(β+λ)= 0, the following corollary follows from Theorem 3.1.

Corollary 3.2. Let α> 0, 0< ρ < 1, λ≥ 0, then

Bλ(1,α,ρ)⊂ B(α,0)⊂ S. (3.4)

Theorem 3.3. Let µ2 ≥ µ1 > 0, 1> ρ2 ≥ ρ1, then

Bλ
(
µ2,α,ρ2

)⊂ Bλ(µ1,α,ρ1
)
. (3.5)

Proof. First, it is obvious that

Bλ
(
µ2,α,ρ2

)⊂ Bλ(µ2,α,ρ1
)
. (3.6)

Therefore we only need to verify that

Bλ
(
µ2,α,ρ1

)⊂ Bλ(µ1,α,ρ1
)
. (3.7)

Let p(z) = [Dλf(z)/z]α for f ∈ Bλ(µ2,α,ρ1), where the power are understood as

principle values, then p(z)= 1+(1+λ)αa2z+··· is analytic in U and

[
Dλf(z)

]α = zαp(z). (3.8)

By taking the derivatives in the both sides of (3.8), we obtain

(
1−µ2

)(Dλf(z)
z

)α
+µ2

(
Dλf(z)

)′(Dλf(z)
z

)α−1

= p(z)+ µ2

α
zp′(z). (3.9)

Since f ∈ Bλ(µ2,α,ρ1), we have

Re
[
p(z)+ µ2

α
zp′(z)

]
> ρ1, z ∈U. (3.10)

According to Lemma 2.2, we obtain

Re
[
p(z)+ µ1

α
zp′(z)

]
≥ 2ρ1−1+ 2

(
1−ρ1

)
µ(1+r) +2

(
1−ρ1

)(
1− 1

µ

)
α
µ

∫ 1

0

uα/µ−1

1+ur du

≥ 2ρ1−1+ 2
(
1−ρ1

)
µ

+2
(
1−ρ1

)(
1− 1

µ

)
· 1

2
> ρ1

(3.11)
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for µ = µ2/µ1 ≥ 1. Hence it follows from (3.6) and (3.11) that

Re

[(
1−µ1

)(Dλf(z)
z

)α
+µ1

(
Dλf(z)

)′(Dλf(z)
z

)α−1
]
= Re

[
p(z)+ µ1

α
zp′(z)

]
> ρ1,

(3.12)

that is,

f ∈ Bλ
(
µ2,α,ρ1

)
. (3.13)

Hence

Bλ
(
µ2,α,ρ1

)⊂ Bλ(µ1,α,ρ1
)
. (3.14)

According to Theorem 3.3 and Corollary 3.2, we have the following corollary.

Corollary 3.4. Let λ≥ 0, µ ≥ 1, 0< ρ < 1, then

Bλ(µ,α,ρ)⊂ Bλ(1,α,ρ)⊂ S. (3.15)

Theorem 3.5. Let α> 0, λ≥ 0, µ > 0, ρ < 1. If f ∈ Bλ(µ,α,ρ), then for |z| = r < 1,

Re

[(
Dλf(z)

)′(Dλf(z)
z

)α−1
]
≥ 2ρ−1+ 2(1−ρ)

µ(1+r) +2(1−ρ)
(

1− 1
µ

)
α
µ

∫ 1

0

uα/µ−1

1+ur du,

Re

[(
Dλf(z)

)′(Dλf(z)
z

)α−1
]
≥ 2ρ−1+ 1−ρ

µ
+2(1−ρ)

(
1− 1

µ

)
α
µ

∫ 1

0

uα/µ−1

1+u du,

(3.16)

and these results are sharp.

Proof. Let p(z) = [Dλf(z)/z]α for f ∈ Bλ(µ,α,ρ), where the power are under-

stood as principle values, then

p(z)= 1+(1+λ)αa2z+··· (3.17)

is analytic in U and

[
Dλf(z)

]α = zαp(z). (3.18)

By taking the derivatives in the both sides of (3.18), we obtain

(1−µ)
(
Dλf(z)
z

)α
+µ(Dλf(z))′

(
Dλf(z)
z

)α−1

= p(z)+ µ
α
zp′(z). (3.19)

Since f ∈ Bλ(µ,α,ρ), we have

Re
[
p(z)+ µ

α
zp′(z)

]
> ρ, z ∈U. (3.20)
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According to Lemma 2.2, we obtain

Re


(Dλf(z))′

(
Dλf(z)
z

)α−1

= Re

[
p(z)+ 1

α
zp′(z)

]

≥ 2ρ−1+ 2(1−ρ)
µ(1+r) +2(1−ρ)

(
1− 1

µ

)
α
µ

∫ 1

0

uα/µ−1

1+ur du,

Re


(Dλf(z))′

(
Dλf(z)
z

)α−1

= Re

[
p(z)+ 1

α
zp′(z)

]

≥ 2ρ−1+ 1−ρ
µ

+2(1−ρ)
(

1− 1
µ

)
α
µ

∫ 1

0

uα/µ−1

1+u du.

(3.21)

Note that,

fλ,µ,α,ρ(z)= L(1,λ+1)


z

[
α
µ

∫ 1

0
uα/µ−1 1+(1−2ρ)uz

1−uz du
]1/α


∈ Bλ(µ,α,ρ), (3.22)

we obtain that inequalities (3.16) are sharp.

Remark 3.6. Setting λ= 0, α= 1 in Theorem 3.5, we get [4, Theorem 1(ii)].

Theorem 3.7. Letα> 0, µ > 0, λ≥ 0, ρ0 ≤ ρ < 1, then Bλ(µ,α,ρ)⊂ Bλ(1,α,ρ1)⊂ S,

where

ρ0 = 1− 1

2−1/µ−2(1−1/µ)(α/µ)
∫ 1
0 (uα/µ−1/(1+u))du

, (3.23)

and the constant ρ0 cannot be replaced by any smaller one.

Proof. Let f(z)∈ Bλ(µ,α,ρ), then it follows from Theorem 3.5 that

Re


(Dλf(z))′

(
Dλf(z)
z

)α−1

> ρ1, z ∈U, (3.24)

where

ρ1 = 2ρ−1+ 1−ρ
µ

+2(1−ρ)
(

1− 1
µ

)
α
µ

∫ 1

0

uα/µ−1

1+u du

= 1−(1−ρ)
[

2− 1
µ
−2

(
1− 1

µ

)
α
µ

∫ 1

0

uα/µ−1

1+u du
]
.

(3.25)

Since

1
2
<
α
µ

∫ 1

0

uα/µ−1

1+u du= 1
2
+
∫ 1

0

uα/µ

(1+u)2 du< 1, (3.26)

so that

max
{

1,
1
µ

}
> 2− 1

µ
−2

(
1− 1

µ

)
α
µ

∫ 1

0

uα/µ−1

1+u du>min
{

1,
1
µ

}
> 0. (3.27)
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Therefore from ρ0 ≤ ρ < 1, we have

ρ1 > 1−(1−ρ0
)[

2− 1
µ
−2

(
1− 1

µ

)
α
µ

∫ 1

0

uα/µ−1

1+u du
]
= 0. (3.28)

Hence it follows from (1.10) and Corollary 3.2 that f(z)∈ Bλ(1,α,ρ1)⊂ S and f(z)
is univalent in U , hence

Bλ(µ,α,ρ)⊂ Bλ
(
1,α,ρ1

)⊂ S (3.29)

and the constant ρ0 cannot be replaced by any smaller one from Theorem 3.5.

Remark 3.8. Setting λ = 0, α = 1 in Theorem 3.7, we get [4, Theorem 2]; setting

λ= 0, µ = 1 in Theorem 3.7, we get the result of [1].

Setting λ= 0, µ =α> 0 in Theorem 3.7, we have the following corollary.

Corollary 3.9. If f(z)∈H, and

Re

[
(1−α)

(
f(z)
z

)α
+αf ′(z)

(
f(z)
z

)α−1
]
> ρα = (α−1)(1−2ln2)

α+(α−1)(1−2ln2)
, z ∈U,

(3.30)

then f(z) is univalent in U , and the result is sharp.

Remark 3.10. We note that ρα < 0 for α> 1.

Setting µ =α= 3, λ= 1 in Theorem 3.7, we have the following corollary.

Corollary 3.11. If f(z)∈H, and

Re
{
z
[(
f ′(z)

)3
]′ +(f ′(z))3

}
>

2−4ln2
5−4ln2

≈−0.34, z ∈U, (3.31)

then f(z) is univalent in U .

Theorem 3.12. Let f(z)= z+∑+∞
k=2akzk ∈ Bλ(µ,α,ρ), then

∣∣a2

∣∣≤ 2−2ρ
(1+λ)(α+µ) , (3.32)

and the inequality is sharp, with the extremal function defined fλ,µ,α,ρ(z) by (3.22).

Proof. Since f(z)= z+∑+∞
k=2akzk ∈ Bλ(µ,α,ρ), we obtain

Re

[
(1−µ)

(
Dλf(z)
z

)α
+µ(Dλf(z))′(Dλf(z)

z

)α−1
]

= Re
[
1+(1+λ)(α+µ)z+···]> ρ.

(3.33)

Therefore, it follows from Lemma 2.3 that

∣∣(1+λ)(α+µ)a2

∣∣≤ 2−2ρ, (3.34)
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or

∣∣a2

∣∣≤ 2−2ρ
(1+λ)(α+µ) . (3.35)

Note that fλ,µ,α,ρ(z) = z+((2−2ρ)/(1+λ)(α+µ))z2+··· ∈ Bλ(µ,α,ρ), we obtain

that inequality (3.32) is sharp.

Remark 3.13. Setting λ= 0, µ = 1 in Theorem 3.12, we get [8, Theorem 6].

Theorem 3.14 (covering theorem). Let α > 0, µ > 0, λ ≥ 0, ρ0 ≤ ρ < 1, f(z) ∈
Bλ(µ,α,ρ), then the unit disk U is mapped on a domain that contain the disk |w|< r1,

where ρ0 defined by (3.23) and

r1 = (1+λ)(α+µ)
2−2ρ+2(1+λ)(α+µ) . (3.36)

Proof. Letw0 be any complex number such that f(z)≠w0 for z ∈U , thenw0 ≠ 0

and

w0f(z)
w0−f(z) = z+

(
a2+ 1

w0

)
z2+··· , (3.37)

is univalent in U by Theorem 3.7, so

∣∣∣∣a2+ 1
w0

∣∣∣∣≤ 2. (3.38)

Therefore according to Theorem 3.12, we obtain

∣∣w0

∣∣≥ (1+λ)(α+µ)
2−2ρ+2(1+λ)(α+µ) = r1. (3.39)

Hence we have completed the proof.

Setting λ= 0 and µ = 1 in Theorem 3.14, we have the following corollary.

Corollary 3.15 (covering theorem). Let f(z) ∈ B0(1,α,ρ) with µ > 0, 0 ≤ ρ < 1,

then the unit disk U is mapped on a domain that contain the disk |w| < (1+α)/(4−
2ρ+2α).
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