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Let R be a ring, and denote by [R,R] the group generated additively by the additive com-
mutators of R. When Rn = Mn(R) (the ring of n×n matrices over R), it is shown that
[Rn,Rn] is the kernel of the regular trace function modulo [R,R]. Then considering R as a
simple left Artinian F -central algebra which is algebraic over F with CharF = 0, it is shown
that R can decompose over [R,R], as R = Fx+[R,R], for a fixed element x ∈ R. The space
R/[R,R] over F is known as the Whitehead space of R. When R is a semisimple central F -
algebra, the dimension of its Whitehead space reveals the number of simple components
of R. More precisely, we show that when R is algebraic over F and CharF = 0, then the
number of simple components of R is greater than or equal to dimF R/[R,R], and when
R is finite dimensional over F or is locally finite over F in the case of CharF = 0, then the
number of simple components of R is equal to dimF R/[R,R].

2000 Mathematics Subject Classification: 12E15, 16K40.

1. Introduction. Additive commutator elements of a ring R and the groups and

structures they make have a great role in the general specification of a ring, and their

study is one of the approaches to recognize rings in noncommutative ring theory

[2, 3, 4, 5]. The reason is clear, they have covered the secrets of noncommutative

behaviour of the structure. In recent years, these elements are returned once again

under a full consideration, and a lot of wonderful works has been done on them

[1, 10, 11, 12, 13]. Our study here is also among these studies, and it reveals some of

bilateral relations between substructure given by additive commutators (the additive

commutator group [R,R], the additive Whitehead group, and the space R/[R,R]) and

some characteristics of the ring. In what follows let R be a ring. By [R,R] we denote

the group generated additively by the additive commutators of R. Following [2], the

additive group R/[R,R] is called the additive Whitehead group of R. This group is an

F -vector space when R is a central F -algebra, and is called the Whitehead space of R.

2. Results. Our first result is about the additive commutator subgroup of a matrix

ring over a given ring.

Proposition 2.1. Let R be a unitary ring and let Rn =Mn(R) be the ring of n×n
matrices over R. Consider the regular trace function on Rn, as tr : Rn→ R, then

[
Rn,Rn

]= {A∈ Rn | tr(A)∈ [R,R]}. (2.1)

Proof. The inclusion “⊆” follows by the fact that tr(AB−BA) ∈ [R,R]. In order

to show the reverse inclusion, let {Eij} be the matrix units and note that if i �= j, we

have Eij = EiiEij −EijEii ∈ [Rn,Rn] and Eii−Ejj = EijEji−EjiEij ∈ [Rn,Rn]. For any
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A= (aij)∈ Rn, we have the following congruence:

A= ΣaijEij ≡ ΣaiiEii ≡ ΣaiiE11
(
mod

[
Rn,Rn

])
. (2.2)

In particular, if tr(A)∈ [R,R], then A∈ [Rn,Rn].
Corollary 2.2. Consider the trace function on Rn module of [R,R]. Clearly the

group isomorphism Rn/[Rn,Rn]� R/[R,R] can be derived.

Theorem 2.3. Let R be a left Artinian central simple F -algebra which is algebraic

over F with CharF = 0. Then R decomposes over [R,R] as R = Fx+[R,R], for a fixed

x ∈ R.

Proof. By Wedderburn-Artin theorem, R =Mn(D) for a division ring D and suit-

able n∈N [6, 14]. We divide our proof into two parts.

(i) Let n = 1, in other words let R =M1(D) = D be a division ring. Let a ∈ R and

let f(t)= tr +b1tr−1+···+br be the minimal polynomial of a over F , where bi ∈ F ,

i= 1,2, . . . ,r and r = dimF F(a). By the Wedderburn theorem [9, page 265], f(t) splits

completely in R[t], this means that there exists ci ∈ R∗ = D−{0}, i = 1,2, . . . ,r −1,

such that f(t)= (t−a)(t−c1ac−1
1 )···(t−cr−1ac−1

r−1). Then we have

TrF(a)/F (a)= a+c1ac−1
1 +c2ac−1

2 +···+cr−1ac−1
r−1

= ra+
(
c1ac−1

1 −a
)
+···+

(
cr−1ac−1

r−1−a
)

= ra+
(
c1

(
ac−1

1

)
−
(
ac−1

1

)
c1

)
+···+

(
cr−1

(
ac−1

r−1

)
−
(
ac−1

r−1

)
cr−1

)

= ra+d1+d2+···+dr−1 = ra+d,

(2.3)

where d1, . . . ,dr−1, d ∈ [R,R]. This simply yields a ∈ F+[R,R] which imply that R =
F+[R,R], x = 1.

(ii) Let n ∈ N be an arbitrary positive integer. We have R = Mn(D), where D is a

division ring. By (i), D = F+[D,D], so

R =Mn(D)=Mn
(
F+[D,D])=Mn(F)+Mn

(
[D,D]

)⊆Mn(F)+[R,R]⊆ R. (2.4)

This implies that R = Mn(F)+ [R,R]. By this formula, given A ∈ R, there exist B ∈
Mn(F) and C ∈ [R,R] such that A = B+C , hence A = (B− (trB/n)I)+ (trB/n)I+C ,

where I is the identity matrix of size n. By Proposition 2.1, (B− (trB/n)I) ∈ [R,R],
and A= (trB/n)I+((B−(tr/n)I)+C), consequently

R = FI+[R,R], x = I. (2.5)

To see a different statements and initial ideas of these theorems we refer the reader

to [1, 2]. Also a multiplicative version of Theorem 2.3 could be found in [11].

Now, we are going to state our main result, which is about the Whitehead space of a

semisimple ring. This theorem is a generalization of a nice theorem due to R. Brauer

[8, page 130].
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Theorem 2.4. Let R be a left Artinian semisimple central F -algebra and let k be the

number of left simple components of R. Then,

(i) if R is algebraic over F and CharF = 0, then k≥ dimF R/[R,R];
(ii) if R is finite dimensional over F , or is locally finite over F , and CharF = 0, then

k= dimF R/[R,R].

Proof. Consider the following chain of functions:

R
f1������������������������������������������������������������→Mn1

(
D1
)×···×Mnk

(
Dk
) f2������������������������������������������������������������→D1/

[
D1,D1

]×···×Dk/
[
Dk,Dk

]
, (2.6)

where f1 is the isomorphism given by the Wedderburn-Artin theorem for the decom-

position of a semisimple left Artinian ring into a direct product of simple ring [6, 14],

and f2 is the F -algebra homomorphisms, by considering component-wise the trace

function on Mni(Di)mod[Di,Di], i= 1, . . . ,k.

By Proposition 2.1 we have, ker(f2◦f1)= [R,R], noting that [R,R]� [R1,R1]×···×
[Rk,Rk], where Rni = Mni(Di), i = 1, . . . ,k. Therefore the following F -isomorphism

holds:

R/[R,R]�D1/
[
D1,D1

]×···×Dk/
[
Dk,Dk

]
. (2.7)

It remains to compute the dimension of Whitehead space of a division ring in the two

cases (i) and (ii) above.

First let D be algebraic over F and CharF = 0. We show that any two elements

ā, b̄ ∈D/[D,D] are linearly dependent. By Theorem 2.3, there exist elements α,β∈ F
and d1,d2 ∈ [D,D], such that a = α+d1 and b = β+d2. In other words, βā−αb̄ = 0̄

in D/[D,D]. Hence in this case dimF D/[D,D]≤ 1.

Now let D be finite dimensional F -central algebra. Let RTD/F :D→ F be the reduced

trace function which is surjective by [7, page 148]. Furthermore, by a theorem of

Amitsur and Rowen [5, page 171] its kernel is equal to [D,D] and so it is a hyperplane

over F , in this case dimF D/[D,D]= 1.

As a latter case letD be a locally finite division ring over it’s center F and CharF = 0.

Now consider the function TR :D→ F defined by

TR(x)= 1
degF (x)

TrF(x)/F (x), (2.8)

we show that this function is an F -linear surjective map, whose kernel is [D,D]. The

claim then is clear.

First note that in this case 1 �∈ [D,D], for if 1 ∈ [D,D], then there exist some xi’s
and yi’s in D, such that 1=∑(xiyi−yixi). Let D1 be the division ring generated by F
together with xi’s andyi’s. Taking the reduced trace ofD1 over its centre of both sides

of 1=∑(xiyi−yixi), we get a contradicting result. Therefore [D,D]∩F = {0}. Now,

by considering the trace formula (given in the proof of Theorem 2.3) for elements a,

b and λa+b (λ∈ F) in D, it is readily verified that

1
r

Tr(λa+b)= λ
n

Tr(a)+ 1
m

Tr(b), (2.9)
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where r , n, and m are degrees of λa+b, a and b. So TR is F -linear. The surjectivity

is clear. In order to specify the kernel of TR, consider the trace formula for elements

of [D,D]. Suppose that a ∈ [D,D]. Now, we have TrF(a)/F (a) = na+d ∈ [D,D]∩F ,

where n is the degree of a over F and d ∈ [D,D]. Therefore TR(a) = 0. By the same

argument we can see that if TR(a)= 0, then a∈ [D,D].
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