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It is known that a regular ring has stable range one if and only if it is unit regular. The
purpose of this note is to give an independent and more elementary proof of this result.
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1. Introduction. All rings considered in this note are associative with identity. A
ring R is said to be (von Neumann) regular if, given any x € R, there exists y € R
such that xyx = x. If, given any x € R, there exists an invertible element u € R such
that xux = x, then R is said to be unit regular. A ring R is said to have stable range
one if for any a, b € R satisfying aR + bR = R, there exists v € R such that a+ by is
right invertible. By Vaserstein [4, Theorem 1], this definition is left-right symmetric.

It has been shown independently in [1, 3] that a regular ring has stable range one
if and only if it is unit regular (see also [2]). The aim of this note is to provide a rather
straightforward and more elementary proof of this result.

We need the following proposition.

PROPOSITION 1.1. A ring R has stable range one if and only if for any a,x,b € R
satisfying ax +b = 1, there exists y € R such that a + by is invertible.

PROOF. Assume that R has stable range one and let a,x,b € R satisfy ax+b = 1.
Then aR + bR = R and by definition, there exists y € R such that a + by is right
invertible. By [5, Theorem 2.6], it follows that a + by is left invertible. The converse is
obvious. |

We also need the following known result (see, e.g., [6]).

PROPOSITION 1.2. LetR be aring. Then R is unit regular if and only if every element
of R is the product of an idempotent and an invertible element (which do not necessarily
commute).

2. A different proof. We are now ready to give a different proof of the following
result.

THEOREM 2.1. A regular ring R has stable range one if and only if it is unit regular.

PROOF. First, assume that R has stable range one and let a € R. Since R is regular,
there exists x € R such that axa = a. Clearly, ax + (1 —ax) = 1. By the assumption
on R and Proposition 1.1, there exists y € R such that u = a+ (1 —ax)y is invertible.
Therefore, axu = ax[a+(1-ax)y] = axa = a.ltfollows that ax = au~! from which
we have aula = axa = a.
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Conversely, assume that R is unit regular and suppose that ax + b = 1 for some
a,x,b € R. By Proposition 1.2, we may write a = eu, b = gv for some idempotents
e,g € R and some invertible elements u,v € R. It follows that

e(ux+b)+(1-e)gv =eux+eb+(1—-e)b=ax+b=1. (2.1)

Since R is regular, there exists ¢ € R such that (1-e)g = (1—e)gc(1—-e)g. Let f =
(I1-e)gc(1—e). We then have, by (2.1), that
e(ux+b)+fb=e(ux+b)+(1-e)gc(l—e)gv

=1-(l-e)gv+(l-e)gv =1. (2.2)

Note that 0 = feux = fax = f(1-b), thatis, fb = f. We also have e = el = e(ax +
b) = e(ux+Db). Thus
e+f=e(ux+b)+fb=1. (2.3)

It is clear that 1 +ebv~1lc(1 —e) is invertible with inverse 1 —ebv~-1c(1 — e). Since
e+ f =1,we have that e+ (1 —e)gc(l —e) = 1, thatis, e+ (1 —e)gvv~—c(l —e) = 1.
But since b = gv, it follows that e+ (1 —e)bv~1c(1 —e) = 1 and therefore

e+bvlc(l—e)=1+ebvic(1-e). (2.4)
Since (1 —e)e = 0, we can write
e+bvlc(l-e)[l+ebvlc(1-e)]=1+ebvlc(l-e). (2.5)
Multiplying on the right by u and noting that eu = a, we then obtain
a+bvlic(l-e)[l+ebv ' (1-e)Ju=[l+ebvtc(l-e)]u, (2.6)

which is invertible. It then follows from Proposition 1.1 that R has stable range one.
O
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