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This paper is devoted to construction and investigation of explicit forms of Wick tensor
powers in general white noise spaces. We give an extension of some objects and structure
of Gaussian analysis to the case of more general white noise measures on E∗ (the dual of
a nuclear space E), such that the random variable 〈ω,ξ〉 is infinitely divisible distributed
for any ξ ∈ E and ω∈ E∗.
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1. Introduction. White noise analysis is an important and popular theme which is

intensively and extensively studied in many works (see, e.g., [4, 5, 6] and the references

therein). These investigations are essentially based on the concept of Gaussian mea-

sure and the associated expansion into Hermite polynomials. Gaussian measures are

remarkable objects, but in applications to some problems of mathematical physics we

need to use measures which are obtained as very singular perturbations of Gaussian

ones (as in quantum theory), or are constructed by the Gibbs approach (as in statistical

physics).

The problem of constructing a non-Gaussian stochastic analysis is a subject of much

current interest. In [1, 2, 7] much progress has been made in non-Gaussian infinite-

dimensional analysis, such as Poisson white noise analysis, Gamma white noise analy-

sis, and so forth. As we know, renormalization is a technique of extracting the principal

parts of infinities. In infinite-dimensional analysis, the kernel of the chaos expansion

is an important tool (e.g., the Hermite kernel, the Charlier kernel, and the Laguerre

kernel). There exist many kinds of renormalization procedures in physical literatures

in which the Wick calculus is crucial. Recently, the white noise analysis initiated by

Hida [5] has been extensively applied to quantum physics. It provides a suitable frame-

work for dealing with quantum stochastic calculus, and enables us to formulate the

renormalization theory on sound mathematical foundation. However, the question

that still remains is to find the explicit forms of Wick tensor powers in general white

noise spaces. In this paper, we confine ourselves to the case of the measure µ on

E∗ = �∗(Rd), the space of Schwartz distributions, as the dual of a nuclear space E
= �(Rd) (i.e., the space of Schwartz test functions), such that its Laplace transform

takes the form

L(ξ) :=
∫
E∗
e〈ω,ξ〉µ(dω)= exp

{〈
f(ξ)

〉}
, ξ ∈ E, (1.1)
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where 〈·,·〉 is the dual pairing of E∗ and E, 〈f(ξ)〉 := ∫
Rd f (ξ(x))dx, and φ(t) :=

exp{f(t)} is the Laplace transform of some one-dimensional infinitely divisible

distribution. In this case, µ is called white noise measure lifted up from this one-

dimensional distribution (see [3]). In the sequel, we will give a unified treatment of

Wick tensor powers in this general white noise space.

2. Moments and orthogonal polynomials in one-dimensional case. Throughout

this section, we consider a real random variableX on a certain probability space whose

all moments exist. We denote by φ(t) the Laplace transform of the probability distri-

bution of X, then for n≥ 1, φ(n)(0) is exactly the n-order moment of X.

For any x ∈ R, let �0(x) ≡ 1. For n ≥ 1, let ∆n denote the Hankel determinant of

order n

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 m2 ··· mn−1

m1 m2 m3 ··· mn

m2 m3 m4 ··· mn+1

...

mn−1 mn ··· ··· m2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.1)

�n(x)= 1
∆n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 m2 ··· mn

m1 m2 m3 ··· mn+1

...

mn−1 mn mn+1 ··· m2n−1

1 x x2 ··· xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.2)

Then, �n(x) is a polynomial of degree n. Furthermore, we have the following propo-

sition.

Proposition 2.1. The polynomials {�n(x)}n≥0 constitute an orthogonal system

with respect to the distribution of X

E
[
�n(X)�m(X)

]= ∆n+1

∆n
δnm, m,n∈N,

E
[
Xn�n(X)

]= ∆n+1

∆n
, n∈N,

(2.3)

where δnm is the Kronecker notation.

Proof. For any n ≥ 1, m < n, by (2.2), we have E[Xm�n(X)] = 0. On the other

hand, noticing that E[Xn∆n�n(X)] is the coefficient of xn+1 in the polynomial

∆n+1�n+1(x), we immediately obtain (2.3).

Proposition 2.2. The polynomials {�n(x)}n≥0 obey the following recursive for-

mulas:
�0(x)= 1,

�1(x)= x−m1,

�n+1(x)=
(
x−cn

)
�n(x)− ∆n−1∆n+1

∆2
n

�n−1(x), n≥ 1,
(2.4)

where cn = (∆n/∆n+1)E[X�2
n(X)].
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Proof. There are constants c0,c1, . . . ,cn such that

x�n(x)= c0�0(x)+c1�1(x)+···+cn�n(x)+�n+1(x). (2.5)

So, by Proposition 2.1, we derive that c0=c1=··· = cn−2 = 0 and cn−1 =∆n−1∆n+1/∆2
n.

Multiplying both sides by �n(x) and taking expectation (x being replaced by X), we

finally obtain (2.4).

Proposition 2.3. If ϕ(t) = exp{f(t)} is the Laplace transform of distribution of

X, then the moments have the following forms:

mn =
∑

k1+k2+···+kq=n

n!
q!

q∏
j=1

f (kj)(0)
kj !

. (2.6)

Example 2.4. If X ∼ N(0,1), by calculation we have m2n−1 = 0, m2n = (2n−1)!!,
∆n = (n−1)!(n−2)!···2!1!, and cn = 0, then

�n+1(x)= x�n(x)−n�n−1(x). (2.7)

So, {�n(x)}n≥0 are Hermite polynomials {�n(x)}n≥0. Its generating function is

exp
{
tx− t

2

2

}
=

∞∑
n=0

tn

n!
�n(x). (2.8)

Example 2.5. If X ∼Π(1) is the Poisson distribution with parameter λ= 1, we have

m1 = 1, m2 = 2, . . . , cn =n+1, ∆n = (n−1)!(n−2)!···2!1!, then

�n+1(x)= (x−n−1)�n−n�n−1(x). (2.9)

Consequently, {�n(x)}n≥0 are the Charlier polynomials {�n(x)}n≥0, whose generat-

ing function is

exp
{
x ln(1+t)−t}= ∞∑

n=0

tn

n!
�n(x). (2.10)

Example 2.6. If X ∼ Γ(1,1) is the Gamma distribution with parameters λ = 1 and

r = 1 (namely, the exponential distribution), we have mn = n!, ∆n = Πn−1
k=1 (k!)2, and

cn = 2n+1. Then

�1(x)= x−1,

�2(x)= x2−4x+2,

�n+1(x)= (x−2n−1)�n(x)−n2�n−1(x).

(2.11)

Namely, {�n(x)}n≥0 are the Laguerre polynomials {�n(x)}n≥0 whose generating func-

tion is

exp
{
xt

1+t − ln(1+t)
}
=

∞∑
n=0

tn

n!
�n(x). (2.12)
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3. Wick tensor powers on infinite-dimensional spaces. We briefly recall some no-

tions and notations in white noise analysis. Let H = L2(Rd) be the Hilbert space of

all square integrable functions defined on Rd, and let Φ = Γ(H) be the Boson Fock

space over H. The Schwartz spaces of C∞-functions with compact support on Rd and

distributions will be denoted by E and E∗, respectively. Then we have a Gel’fand triplet

E ⊂H ⊂ E∗ (3.1)

with dual pairing 〈·,·〉. Suppose that the measure µ on E∗ can be defined by its Laplace

transform

L(ξ) :=
∫
E∗
e〈ω,ξ〉µ(dω), ξ ∈ E. (3.2)

Then, we make the following assumptions about µ:

L(ξ)= exp
{〈
f(ξ)

〉}
, ξ ∈ E, (3.3)

where 〈f(ξ)〉 := ∫Rd f (ξ(x))dx and φ(t) = exp{f(t)} is the Laplace transform of a

certain one-dimensional random variable X with infinitely divisible distribution, and

the generating function of the orthogonal polynomials �n(x) with respect to X is of

the form

G(x,t) :=
∞∑
n=0

tn

n!
�n(x)= exp

{
xα(t)−f (α(t))}, (3.4)

where α(0)= 0 and α(t) is analytic in some neighborhood of zero. Hence, µ is white

noise measure lifted from this one-dimensional distribution (see [3]). Now we lift up

the generating function to the infinite-dimensional space E∗, such that

G(ω,ξ)= exp
{〈
ω,α(ξ)

〉−〈f (α(ξ))〉}= ∞∑
n=0

1
n!

〈
�⊗
n(ω),ξ⊗n

〉
, (3.5)

where �⊗
n(ω)∈ E∗⊗̂n is called Wick tensor power. Forω∈ E∗, k≥ 2, let τk(ω)∈ E∗⊗̂k

be determined uniquely by the formula

〈
τk(ω),ξ1⊗̂···⊗̂ξk

〉= 〈ω,ξ1 ···ξk
〉
, (3.6)

denote τk = τk(1), then we have the following theorem.

Theorem 3.1. The Wick tensor power has the following form:

�⊗
n(ω)=

∑
k1+···+kq=n

n!
q!

�̂q

j=1

1
kj !

[
α(kj)(0)τkj (ω)−(f ◦α)(kj)(0)τkj

]
. (3.7)

Proof. Set

g(t) := 〈ω,α(tξ)〉−〈f (α(tξ))〉. (3.8)
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Since

g(n)(0)=α(n)(0)〈ω,ξn〉−(f ◦α)(n)(0)〈ξn〉
=α(n)(0)〈τn(ω),ξ⊗n〉−(f ◦α)(n)(0)〈τn,ξ⊗n〉, (3.9)

it follows that

〈
�⊗
n(ω),ξ⊗n

〉= dn

dtn
exp

{
g(t)

}|t=0 =
∑

k1+k2+···+kq=n

n!
q!

q∏
j=1

g(kj)(0)
kj !

, (3.10)

hence (3.7) holds.

Let �n(�) be the space of finite linear combinations of functions of the form

ω � �→ 〈
ω,ξ1

〉···〈ω,ξn〉= 〈ω⊗n,ξ1⊗̂···⊗̂ξn
〉
, ω∈ E∗, (3.11)

where ξ1, . . . ,ξn ∈ E. An element of the algebraic sums

�(�)=
∞∑
n=0

�n(�) (3.12)

is called a polynomial.

Definition 3.2. The renormalization operator � : ��� is defined by

�

 n∏
j=1

〈
ω,ξj

〉=〈�⊗
n(ω),

�̂n

j=1
ξj
�
, (3.13)

and extends to a continuous linear operator on the Hida’s testing functional space

(E) (see [6]) which transforms the n-fold Stratonovich integrals into Wiener-Itô’s ones,

particularly,

�
(
exp

{〈ω,ξ〉})= ∞∑
n=0

1
n!

〈
�⊗
n(ω),ξ⊗n

〉
= exp

{〈
ω,α(ξ)

〉−〈f (α(ξ))〉} (3.14)

is the Wick exponential functional on the general white noise space (E∗,µ).

Example 3.3 (Hermite kernel). If X ∼N(0,1), then f(t)= t2/2,

G(x,t)= exp
{
xt− t

2

2

}
=

∞∑
n=0

tn

n!
�n(x), (3.15)

hence

G(ω,ξ)= exp
{
〈ω,ξ〉− 1

2

〈
ξ2〉}

=
∞∑
n=0

1
n!

〈
�⊗
n(ω),ξ⊗n

〉
.

(3.16)
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On the other hand,

α(ξ)= ξ, (f ◦α)(ξ)= ξ
2

2
,

α′(0)= 1, (f ◦α)′(0)= 0,

α′′(0)= 0, (f ◦α)′′(0)= 1,

(3.17)

other derivatives vanish. For k= 0,1, . . . ,[n/2], if there are k of the integers k1, . . . ,kq
equal to 2, and other n−2k integers equal to 1, then q =n−k

�⊗
n(ω)=

[n/2]∑
k=0

(
n−k
k

)
n!

(n−k)!2k
(−τ2

)⊗k⊗̂ω⊗n−2k

=
[n/2]∑
k=0

(−1)kn!
2kk!(n−2k)!

τ⊗k2 ⊗̂ω⊗n−2k.

(3.18)

In this case we have

�
(〈ω,ξ〉n)= 〈�⊗

n(ω),ξ⊗n
〉= [n/2]∑

k=0

(−1)kn!‖ξ‖2k〈ω,ξ〉n−2k

2kk!(n−2k)!
, (3.19)

�

 n∏
j=1

〈
ω,ξj

〉= [n/2]∑
k=0

(−1)k
∑

|S|=2k

〈
ξ1, . . . ,ξn

〉
S

∏
j∉S

〈
ω,ξj

〉
, (3.20)

where S ⊂ {1, . . . ,n}, |S| is the cardinal of S, and

〈
ξ1, . . . ,ξn

〉
S =

∑〈
ξi1 ,ξj1

〉···〈ξik ,ξjk〉, (3.21)

where the pairs {i1,j1}, . . . ,{ik,jk} run over S.

Example 3.4 (Charlier kernel). If X ∼Π(1), then f(t)= et−1,

G(x,t)= exp
{
x ln(1+t)−t}= ∞∑

n=0

tn

n!
�n(x), (3.22)

hence

G(ω,ξ)= exp
{〈
ω, ln(1+ξ)〉−〈ξ〉}= ∞∑

n=0

1
n!

〈
�⊗n(ω),ξ⊗n

〉
. (3.23)

In this case, we have α(ξ) = ln(1+ξ), (f ◦α)(ξ) = ξ, α′(0) = 1, (f ◦α)′(0) = 1, and

for k≥ 2, α(k)(0)= (−1)k−1(k−1)!, (f ◦α)(k)(0)= 0, then

�⊗n(ω)=
∑

k1+···+kq=n

(−1)n−qn!
q!

�̂q

j=1

1
kj
τkj (ω), (3.24)



EXPLICIT FORMS OF WICK TENSOR POWERS . . . 419

where τ1(ω) is understood as ω−τ1. Moreover, in the case of kj = 1, 〈ω,ξkj 〉 in the

following expression should be replaced by 〈ω,ξ〉−〈ξ〉:

�
(〈ω,ξ〉n)= 〈�⊗n(ω),ξ⊗n

〉
=

∑
k1+···+kq=n

(−1)n−qn!
q!k1 ···kq

〈
ω,ξk1

〉···〈ω,ξkq〉. (3.25)

Example 3.5 (Laguerre kernel). If X ∼ Γ(1,1), then f(t)=− ln(1−t),

G(x,t)= exp
{
xt(1+t)−1− ln(1+t)}= ∞∑

n=0

tn

n!
�n(x), (3.26)

hence

G(ω,ξ)= exp
{〈
ω,ξ(1+ξ)−1〉−〈 ln(1+ξ)〉}= ∞∑

n=0

1
n!

〈
�⊗
n(ω),ξ⊗n

〉
. (3.27)

In this case, we have α(ξ)= ξ(1+ξ)−1, (f ◦α)(ξ)= ln(1+ξ), and for k≥ 1, α(k)(0)=
(−1)k−1k!, (f ◦α)(k)(0)= (−1)k−1(k−1)!. It follows that

�⊗
n(ω)=

∑
k1+···+kq=n

(−1)n−qn!
q!

�̂q

j=1

1
kj
τ̃kj (ω), (3.28)

where τ̃1(ω)=ω−τ1, τ̃k(ω)= kτk(ω)−τk, for k≥ 2. Finally we have

�
(〈ω,ξ〉n)= 〈�⊗

n(ω),ξ⊗n
〉

=
∑

k1+···+kq=n

(−1)n−qn!
q!

q∏
j=1

[〈
ω,ξkj

〉− 〈ξkj〉
kj

]
.

(3.29)
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