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ON A WEAK FORM OF WEAK QUASI-CONTINUITY
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A weak form of weak quasi-continuity, which we call subweak quasi-continuity, is in-
troduced. It is shown that subweak quasi-continuity is strictly weaker than weak quasi-
continuity. Subweak quasi-continuity is used to strengthen several results in the literature
concerning weak quasi-continuity. Specifically, results concerning the graph, graph func-
tion, and restriction of a weakly quasi-continuous function are extended slightly. Also, a
result concerning weakly quasi-continuous retractions is strengthened.

2000 Mathematics Subject Classification: 54C10.

1. Introduction. Weakly quasi-continuous functions were introduced by Popa and
Stan [9]. Recently, weak quasi-continuity has been developed further by Noiri [5, 6]
and Park and Ha [8]. Due to a result by Noiri [5], weak quasi-continuity is equiva-
lent to the weak semicontinuity developed by Arya and Bhamini [1]. The purpose of
this note is to introduce the concept of subweak quasi-continuity, which we define in
terms of a base for the topology on the codomain. We establish that this condition is
strictly weaker than weak quasi-continuity and we use it to strengthen some of the
results in the literature concerning weak quasi-continuity. For example, we show that
the graph of a subweakly quasi-continuous function with a Hausdorff codomain is
semiclosed. We also show that, if the graph function is subweakly quasi-continuous
with respect to the usual base for the product space, then the function itself is weakly
quasi-continuous, and that, if a function is subweakly quasi-continuous with respect
to the base %, then the restriction to a preopen set is subweakly quasi-continuous
with respect to the same base. These results strengthen slightly the comparable re-
sults for weakly quasi-continuous functions. Finally, we extend a result concerning
weakly quasi-continuous retractions and investigate some of the basic properties of
subweakly quasi-continuous functions.

2. Preliminaries. The symbols X and Y denote topological spaces with no separa-
tion axioms assumed unless explicitly stated. All sets are considered to be subsets of
topological spaces. The closure and interior of a set A are signified by C1(A) and Int(A),
respectively. A set A is semiopen (preopen, x-open) provided that A < CI(Int(A)) (A <
Int(CI(A)), A € Int(Cl(Int(A)))). A set is semiclosed (preclosed, «-closed) provided
that its complement is semiopen (preopen, x-open). The collection of all semiopen
sets in a space X is denoted by SO(X) and the collection of all semiopen sets in X
containing a fixed point x is denoted by SO(X,x). The intersection of all semiclosed
sets containing a set A is called the semiclosure of A and denoted by sCI(A). The
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semi-interior of a set A, denoted by sInt(A), is the union of all semiopen sets con-
tained in A. The preclosure of A, denoted by pCl(A), is the intersection of all preclosed
sets containing A. Finally, if an operator is used with respect to a proper subspace, a
subscript is added to the operator. Otherwise, it is assumed that the operator refers
to the entire space.

DEFINITION 2.1 (Popa and Stan [9]). A function f : X — Y is said to be weakly
quasi-continuous if for every x € X, every open set U in X containing x, and every
open set V in Y containing f(x), there exists a nonempty open set W in X such that
W< U and f(W) < Cl(V).

DEFINITION 2.2 (Arya and Bhamini [1]). A function f: X — Y is said to be weakly
semicontinuous if for every x € X and every open set V in Y containing f(x), there
exists U € SO(X, x) for which f(U) < CI(V).

The following result by Noiri [5] shows that weak quasi-continuity and weak semi-
continuity are equivalent.

THEOREM 2.3 (Noiri [5, Theorem 4.1]). A function f : X — Y is weakly quasi-con-
tinuous if and only if for every x € X and every open setV containing f (x), there exists
U € SO(X,x) for which f(U) < Cl(V).

DEFINITION 2.4. A function f: X — Y is said to be subweakly continuous (Rose
[10]) (subalmost weakly continuous (Baker [2])) if there is an open base % for the
topology on Y such that CI(f~1(V)) < f~1(CL(V)) (pCl(f~1(V)) < f~1(CL(V))) for
every V € R.

3. Subweakly quasi-continuous functions. The following characterization of weak
quasi-continuity is due to Noiri [5].

THEOREM 3.1 (Noiri [5, Theorem 4.3(d)]). A function f : X — Y is weakly quasi-
continuous if and only if sC1(f~1(V)) € f~1(C1(V)) for every opensetV inY.

We define a function f : X — Y to be subweakly quasi-continuous provided that
there is an open base % for the topology on Y for which sC1(f~1(V)) c f~1(Cl(V))
for every V € %. Obviously, weak quasi-continuity implies subweak quasi-continuity.
The following example shows that these concepts are not equivalent.

EXAMPLE 3.2. Let X = R have the usual topology and Y = X have the discrete
topology. The identity mapping f : X — Y is subweakly quasi-continuous with respect
to the base consisting of the singleton sets in Y. However, f is not weakly quasi-
continuous because for V = (0,1) u (1,2), sCL(f~1(V)) ¢ f~1(CL(V)).

Since sCI(A) = AulInt(Cl(A)) for every set A, we have the following characterization
of subweak quasi-continuity.

THEOREM 3.3. A function f : X — Y is subweakly quasi-continuous if and only if
there is an open base % for the topology on'Y for which Int(C1(f~1(V))) < f~1(CL(V))
for every V. < 3.
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Since sCl(A) < CI(A) for every set A, obviously, subweak continuity implies sub-
weak quasi-continuity. The following example shows that the converse implication
does not hold.

EXAMPLE 3.4. Let X =[1/2,3/2] have the usual relative topology, Y = {0,1} have
the discrete topology, and let f : X — Y be the greatest integer function. Kar and Bhat-
tacharya [3] showed that f is weakly quasi-continuous (their term is weakly semicon-
tinuous) but not weakly continuous. Obviously, the function f is also not subweakly
continuous.

The following two examples establish that subweak quasi-continuity is independent
of subalmost weak continuity.

EXAMPLE 3.5. Let X be an indiscrete space with at least two elements andlet Y = X
have the discrete topology. Since pCl({x}) = {x} for every x € X, the identity mapping
f:X — Y is subalmost weakly continuous with respect to the base consisting of the
singleton sets in Y. However, since singleton sets in X are dense, f is not subweakly
quasi-continuous.

EXAMPLE 3.6. Let X = {a,b,c} have the topology T = {X,9,{a},{b},{a,b}} and
Y = X have the discrete topology. Let f: X — Y be the identity mapping. The function
f is not subalmost weakly continuous, since any base for Y must include V = {a} and
pCL(f~1(V)) ¢ f~1(CL(V)). However, f is subweakly quasi-continuous with respect to
the base of singleton subsets of Y.

4. Graph related properties. Recall that the graph of a function f: X — Y is the
subspace G(f) = {(x, f(x)) : x € X} of the product space X xXY.

Park and Ha [8] proved that the graph of a weakly quasi-continuous function with
a Hausdorff codomain is semiclosed. We show that weak quasi-continuity can be re-
placed by subweak quasi-continuity.

THEOREM 4.1. If f: X — Y is subweakly quasi-continuous and Y is Hausdorff, then
the graph of f, G(f), is semiclosed.

PROOF. Let 3B be an open base for Y such that sC1(f~1(V)) < f~1(Cl(V)) for every
VeB. Let (x,y) € XXY—-G(f).Since v # f(x), there exists disjoint open sets V and
W with f(x) e W,y €V,and V € B. Then x ¢ f~1(Cl(V)), and, since sCI1(f~1(V)) c
FHCL(V)), x & sCL(f~1(V)). Therefore (x,y) € (X—sCI(f 1 (V)))xV € XXY -G(f).
Since sCl(f~1(V)) is semiclosed, X —sCI(f~1(V)) is semiopen. Since finite products of
semiopen sets are semiopen, (X —sCl(f~1(V))) x V is semiopen. Finally, since unions
of semiopen sets are semiopen, it follows that X XY — G (f) is semiopen and that G(f)
is semiclosed. a

COROLLARY 4.2 (Park and Ha [8, Corollary 4.2]). If f : X — Y is weakly quasi-
continuous and Y is Hausdorff, then the graph of f, G(f), is semiclosed.

By the graph function of a function f : X — Y we mean the function g: X — X XY
given by g(x) = (x, f(x)) for every x € X.
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THEOREM 4.3. Let f: (X,T) — (Y,0) be a function and let B be an open base for
o.Let¢={UxV:UeT,VeB}. The function f is subweakly quasi-continuous with
respect to the base % if and only if the graph function of f, g : X — X XY, is subweakly
quasi-continuous with respect to the base 6.

PROOF. Assume that f: (X,7) — (Y,0) is subweakly quasi-continuous with re-
spect to the base B for 0. Let UxV € ¢, where U € T and V € ®. Then sCl(g~* (U x
V)) = sCl(U n f~1(V)) < sCl(U) nsCL(f~1(V)) < CLU) n f~1(CL(V)) = g~ 1 (CU(U) x
CL(V)) = g~ (CI(U x V)). Thus g is subweakly quasi-continuous with respect to the
base €.

Assume that g : (X,T) — X XY is subweakly quasi-continuous with respect to the
base € for X x Y. If V € B, then sCI(f~1(V)) =sCl(g ' (X xV)) € g H(CL(X xV)) =
g HX xCl(V)) = f~1(CI(V)). Therefore, f is subweakly quasi-continuous with re-
spect to the base %. |

In Theorem 4.3, if we take % to be o, the topology on Y, then we have the following
result.

COROLLARY 4.4. If the graph function g : X — X XY of a function f is subweakly
quasi-continuous with respect to the usual base for the product space, then the function
f is weakly quasi-continuous.

COROLLARY 4.5 (Noiri [5, The “only if” part of Theorem 6.3.4]). Ifthe graph function
g:X — X XY of a function f is weakly quasi-continuous, then the function f is weakly
quasi-continuous.

5. Additional properties

DEFINITION 5.1 (Kar and Bhattacharya [4]). A space X is said to be semi-T; provided
that for every pair of distinct points x and y in X there exist sets U € SO(X,x) and
V eSO(X,y) suchthat y ¢ U and x ¢ V.

THEOREM 5.2. If Y is Hausdorff and f : X — Y is a subweakly quasi-continuous
injection, then X is semi-T;.

PROOF. Let x; and x> be distinct points in X and let % be an open base for Y such
that sC1(f~%(V)) < f~1(CL(V)) for every V € . Since Y is Hausdorff and f(x;) #
f(x2), there exist disjoint open sets U and V in Y with f(x;) € U and f(x») € V, and
V € . Then, since f(x;) ¢ CL(V), we have x; € X — f~1(CL(V)) € X —sCL(f1(V))
which is semiopen and does not contain x,. Therefore X is semi-T;. O

The function in Example 3.6 is a subweakly quasi-continuous injection with a Haus-
dorff codomain and a non-T;-domain. Therefore, the conclusion that X is semi-T; in
Theorem 5.2 cannot be strengthened to T;.

Since the restriction of the function f in Example 3.6 to the set A = {a,c} is not sub-
weakly quasi-continuous, we see that the restriction of a subweakly quasi-continuous
function can fail to be subweakly quasi-continuous. Noiri [5] proved that the restric-
tion of weakly quasi-continuous function to an open set is weakly quasi-continuous
and Arya and Bhamini [1] extended this result to x-open sets. Finally, Park and Ha [8]
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extended the result further to preopen sets. In what follows, we establish the analo-
gous result for subweakly quasi-continuous functions.

THEOREM 5.3. If f: X — Y is subweakly quasi-continuous with respect to the base
B forY and A is a preopen set in X, then f|,: A — Y is subweakly quasi-continuous
with respect to the base %B.

PROOF. Let V € @B, then using (Noiri [7, Lemma 3.3]) we see that sClA(flgl(V)) =
AnsClfIZE(V)) = AnsCI(f 1 (V) nA) € AnsCI(f (V) € An f-HCLV)) =
f |;\1(C1(V)). Therefore, f|4 : A — Y is subweakly quasi-continuous with respect to
the base . O

In Theorem 5.3, if we let % be the topology, then we have the following result.

COROLLARY 5.4 (Park and Ha [8, Theorem 3.8]). If f : X — Y is weakly quasi-
continuous and A is an preopen set in X, then f|4: A — Y is weakly quasi-continuous.

THEOREM 5.5. If f: X — Y is subweakly quasi-continuous and A is an open set in' Y
containing f(X), then f: X — A is subweakly quasi-continuous.

PROOF. Let & be an open base for Y for which sCl1(f~1(V)) < f~1(C1(V)) for every
V € RB. Then € = {VNA:V € B} is an open base for the relative topology on A.
Let VN A € %, where V € ®. Then sCL(f~1(VnA)) = sCI(f~H(V)) c f~HCL(V)) =
F~HCL(V) N A). The proof is completed by establishing that C1(V) nA < Clx (VN A).

Let y e CI(V) N A and let W < A be open in A with y € W. Since A is openin Y, W
is openin Y. Because y € CI(V), WNnV # @. Therefore Wn (VN A) # &, which proves
that y € Cl4(VNA). Thus CI(V)NnA c Cla(VNA).

Now, it follows that f : X — A is subweakly quasi-continuous. a

Park and Ha [8] defined a function f: X — A, where A c X, to be a weakly quasi-
continuous retraction provided that f is weakly quasi-continuous and f'| 4 is the iden-
tity on A. It is then proved (Park and Ha [8, Theorem 3.15]) that, if f : X — A is a weakly
quasi-continuous retraction and X is Hausdorff, then A is semiclosed in X. We prove
the following comparable result for subweakly quasi-continuous functions.

THEOREM 5.6. LetA < X and let f : X — X be a subweakly quasi-continuous function
such that f(X) = A and f 4 is the identity on A. If X is Hausdorf{f, then A is semiclosed.

PROOF. Assume A is not semiclosed. Let x € sCI(A) — A. Let 3 be an open base for
the topology on X such that sC1(f~1(V)) < f~1(Cl(V)) for every V € . Since x ¢ A,
x # f(x). Because X is Hausdorff, there exist disjoint open sets V and W such that
x eV, f(x)eW,and V € B. Let U € SO(X,x). Then x € UnV, which is semiopen
in X (Noiri [7]). Since x € sCI(A), (UNV)NA # &. So there exists ¥y € (UNV)NA.
Since y € A, f(v) = y and therefore y € f~1(V). Thus Un f~1(V) # @ and we
see that x € sCl(f~1(V)). However, f(x) € W, which is open and disjoint from V.
Hence f(x) ¢ CL(V) or x ¢ f~1(Cl(V)), which contradicts the assumption that f is
subweakly quasi-continuous. a

LEMMA 5.7. IfACY and f: X — A is weakly quasi-continuous, then f : X — Y is
weakly quasi-continuous.
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PROOF. IfVisanopensetinY,thensCl(f~1(V))=sCl(f1(VNA)) c fHCla(Vn
A) = fHANCUVNA)) = £ HCUVNA)) £ H(CLV)). O

Thus a weakly quasi-continuous retraction satisfies the hypothesis of Theorem 5.6
and we have the following corollary.

COROLLARY 5.8 (Park and Ha [8, Theorem 3.15]). If f: X — A, where Ac X, is a
weakly quasi-continuous retraction and X is Hausdorff, then A is semiclosed.

THEOREM 5.9. Let Y be a Hausdor(f space, f1 : X — Y continuous, and f>: X — Y
subweakly quasi-continuous. Then {x € X : f1(x) = f>(x)} is semiclosed.

PROOF. Let A= {x € X: fi(x) = fo(x)} and let x € X — A. Let B be an open base
for the topology on Y for which sCI(f5 ' (V)) < f5 1(C1(V)) for every V € %. Since Y is
Hausdorff and f;(x) # f2(x), there exist disjoint open sets V and W in Y for which
filx) eV, foa(x)eW,and V € B. Since f>(x) ¢ Cl(V), we have x € X—fz’l(Cl(V)) c
X —sCl(f2(V)). Therefore x € f71(V) n (X —sCl(f51(V))) € X — A. Since f;1(V) is
open, X —sCl(f;1(V)) is semiopen, and the intersection of an open set and a semiopen
set is semiopen (Noiri [7]), we see that X — A is semiopen and that A is semiclosed.

O

COROLLARY 5.10. Let Y be Hausdorff, fi : X — Y continuous, and f> : X — Y sub-
weakly quasi-continuous. If fi and f> agree on a dense subset of X, then f = f>.
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