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ON A WEAK FORM OF WEAK QUASI-CONTINUITY
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A weak form of weak quasi-continuity, which we call subweak quasi-continuity, is in-
troduced. It is shown that subweak quasi-continuity is strictly weaker than weak quasi-
continuity. Subweak quasi-continuity is used to strengthen several results in the literature
concerning weak quasi-continuity. Specifically, results concerning the graph, graph func-
tion, and restriction of a weakly quasi-continuous function are extended slightly. Also, a
result concerning weakly quasi-continuous retractions is strengthened.
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1. Introduction. Weakly quasi-continuous functions were introduced by Popa and

Stan [9]. Recently, weak quasi-continuity has been developed further by Noiri [5, 6]

and Park and Ha [8]. Due to a result by Noiri [5], weak quasi-continuity is equiva-

lent to the weak semicontinuity developed by Arya and Bhamini [1]. The purpose of

this note is to introduce the concept of subweak quasi-continuity, which we define in

terms of a base for the topology on the codomain. We establish that this condition is

strictly weaker than weak quasi-continuity and we use it to strengthen some of the

results in the literature concerning weak quasi-continuity. For example, we show that

the graph of a subweakly quasi-continuous function with a Hausdorff codomain is

semiclosed. We also show that, if the graph function is subweakly quasi-continuous

with respect to the usual base for the product space, then the function itself is weakly

quasi-continuous, and that, if a function is subweakly quasi-continuous with respect

to the base �, then the restriction to a preopen set is subweakly quasi-continuous

with respect to the same base. These results strengthen slightly the comparable re-

sults for weakly quasi-continuous functions. Finally, we extend a result concerning

weakly quasi-continuous retractions and investigate some of the basic properties of

subweakly quasi-continuous functions.

2. Preliminaries. The symbols X and Y denote topological spaces with no separa-

tion axioms assumed unless explicitly stated. All sets are considered to be subsets of

topological spaces. The closure and interior of a setA are signified by Cl(A) and Int(A),
respectively. A set A is semiopen (preopen, α-open) provided that A⊆ Cl(Int(A)) (A⊆
Int(Cl(A)), A � Int(Cl(Int(A)))). A set is semiclosed (preclosed, α-closed) provided

that its complement is semiopen (preopen, α-open). The collection of all semiopen

sets in a space X is denoted by SO(X) and the collection of all semiopen sets in X
containing a fixed point x is denoted by SO(X,x). The intersection of all semiclosed

sets containing a set A is called the semiclosure of A and denoted by sCl(A). The
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semi-interior of a set A, denoted by sInt(A), is the union of all semiopen sets con-

tained inA. The preclosure ofA, denoted by pCl(A), is the intersection of all preclosed

sets containing A. Finally, if an operator is used with respect to a proper subspace, a

subscript is added to the operator. Otherwise, it is assumed that the operator refers

to the entire space.

Definition 2.1 (Popa and Stan [9]). A function f : X → Y is said to be weakly

quasi-continuous if for every x ∈ X, every open set U in X containing x, and every

open set V in Y containing f(x), there exists a nonempty open set W in X such that

W ⊆U and f(W)⊆ Cl(V).

Definition 2.2 (Arya and Bhamini [1]). A function f : X → Y is said to be weakly

semicontinuous if for every x ∈ X and every open set V in Y containing f(x), there

exists U ∈ SO(X,x) for which f(U)⊆ Cl(V).

The following result by Noiri [5] shows that weak quasi-continuity and weak semi-

continuity are equivalent.

Theorem 2.3 (Noiri [5, Theorem 4.1]). A function f : X → Y is weakly quasi-con-

tinuous if and only if for every x ∈X and every open set V containing f(x), there exists

U ∈ SO(X,x) for which f(U)⊆ Cl(V).

Definition 2.4. A function f : X → Y is said to be subweakly continuous (Rose

[10]) (subalmost weakly continuous (Baker [2])) if there is an open base � for the

topology on Y such that Cl(f−1(V)) ⊆ f−1(Cl(V)) (pCl(f−1(V)) ⊆ f−1(Cl(V))) for

every V ∈�.

3. Subweakly quasi-continuous functions. The following characterization of weak

quasi-continuity is due to Noiri [5].

Theorem 3.1 (Noiri [5, Theorem 4.3(d)]). A function f : X → Y is weakly quasi-

continuous if and only if sCl(f−1(V))⊆ f−1(Cl(V)) for every open set V in Y .

We define a function f : X → Y to be subweakly quasi-continuous provided that

there is an open base � for the topology on Y for which sCl(f−1(V)) ⊆ f−1(Cl(V))
for every V ∈�. Obviously, weak quasi-continuity implies subweak quasi-continuity.

The following example shows that these concepts are not equivalent.

Example 3.2. Let X = R have the usual topology and Y = X have the discrete

topology. The identity mapping f :X → Y is subweakly quasi-continuous with respect

to the base consisting of the singleton sets in Y . However, f is not weakly quasi-

continuous because for V = (0,1)∪(1,2), sCl(f−1(V))� f−1(Cl(V)).

Since sCl(A)=A∪Int(Cl(A)) for every setA, we have the following characterization

of subweak quasi-continuity.

Theorem 3.3. A function f : X → Y is subweakly quasi-continuous if and only if

there is an open base � for the topology on Y for which Int(Cl(f−1(V)))⊆ f−1(Cl(V))
for every V ⊆�.
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Since sCl(A) ⊆ Cl(A) for every set A, obviously, subweak continuity implies sub-

weak quasi-continuity. The following example shows that the converse implication

does not hold.

Example 3.4. Let X = [1/2,3/2] have the usual relative topology, Y = {0,1} have

the discrete topology, and let f :X → Y be the greatest integer function. Kar and Bhat-

tacharya [3] showed that f is weakly quasi-continuous (their term is weakly semicon-

tinuous) but not weakly continuous. Obviously, the function f is also not subweakly

continuous.

The following two examples establish that subweak quasi-continuity is independent

of subalmost weak continuity.

Example 3.5. Let X be an indiscrete space with at least two elements and let Y =X
have the discrete topology. Since pCl({x})= {x} for everyx ∈X, the identity mapping

f : X → Y is subalmost weakly continuous with respect to the base consisting of the

singleton sets in Y . However, since singleton sets in X are dense, f is not subweakly

quasi-continuous.

Example 3.6. Let X = {a,b,c} have the topology τ = {X,∅,{a},{b},{a,b}} and

Y =X have the discrete topology. Let f :X → Y be the identity mapping. The function

f is not subalmost weakly continuous, since any base for Y must include V = {a} and

pCl(f−1(V))� f−1(Cl(V)). However, f is subweakly quasi-continuous with respect to

the base of singleton subsets of Y .

4. Graph related properties. Recall that the graph of a function f : X → Y is the

subspace G(f)= {(x,f (x)) : x ∈X} of the product space X×Y .

Park and Ha [8] proved that the graph of a weakly quasi-continuous function with

a Hausdorff codomain is semiclosed. We show that weak quasi-continuity can be re-

placed by subweak quasi-continuity.

Theorem 4.1. If f :X → Y is subweakly quasi-continuous and Y is Hausdorff, then

the graph of f , G(f), is semiclosed.

Proof. Let � be an open base for Y such that sCl(f−1(V))⊆ f−1(Cl(V)) for every

V ∈�. Let (x,y)∈X×Y−G(f). Since y �= f(x), there exists disjoint open sets V and

W with f(x)∈W , y ∈ V , and V ∈�. Then x ∉ f−1(Cl(V)), and, since sCl(f−1(V))⊆
f−1(Cl(V)),x ∉ sCl(f−1(V)). Therefore (x,y)∈ (X−sCl(f−1(V)))×V ⊆X×Y−G(f).
Since sCl(f−1(V)) is semiclosed, X−sCl(f−1(V)) is semiopen. Since finite products of

semiopen sets are semiopen, (X−sCl(f−1(V)))×V is semiopen. Finally, since unions

of semiopen sets are semiopen, it follows that X×Y−G(f) is semiopen and that G(f)
is semiclosed.

Corollary 4.2 (Park and Ha [8, Corollary 4.2]). If f : X → Y is weakly quasi-

continuous and Y is Hausdorff, then the graph of f , G(f), is semiclosed.

By the graph function of a function f : X → Y we mean the function g : X → X×Y
given by g(x)= (x,f (x)) for every x ∈X.
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Theorem 4.3. Let f : (X,τ)→ (Y ,σ) be a function and let � be an open base for

σ . Let � = {U×V : U ∈ τ, V ∈�}. The function f is subweakly quasi-continuous with

respect to the base � if and only if the graph function of f , g :X →X×Y , is subweakly

quasi-continuous with respect to the base �.

Proof. Assume that f : (X,τ) → (Y ,σ) is subweakly quasi-continuous with re-

spect to the base � for σ . Let U×V ∈ �, where U ∈ τ and V ∈�. Then sCl(g−1(U×
V)) = sCl(U ∩f−1(V)) ⊆ sCl(U)∩ sCl(f−1(V)) ⊆ Cl(U)∩f−1(Cl(V)) = g−1(Cl(U)×
Cl(V)) = g−1(Cl(U ×V)). Thus g is subweakly quasi-continuous with respect to the

base �.

Assume that g : (X,τ)→ X×Y is subweakly quasi-continuous with respect to the

base � for X×Y . If V ∈ �, then sCl(f−1(V)) = sCl(g−1(X×V)) ⊆ g−1(Cl(X×V)) =
g−1(X ×Cl(V)) = f−1(Cl(V)). Therefore, f is subweakly quasi-continuous with re-

spect to the base �.

In Theorem 4.3, if we take � to be σ , the topology on Y , then we have the following

result.

Corollary 4.4. If the graph function g : X → X×Y of a function f is subweakly

quasi-continuous with respect to the usual base for the product space, then the function

f is weakly quasi-continuous.

Corollary 4.5 (Noiri [5, The “only if” part of Theorem 6.3.4]). If the graph function

g :X →X×Y of a function f is weakly quasi-continuous, then the function f is weakly

quasi-continuous.

5. Additional properties

Definition 5.1 (Kar and Bhattacharya [4]). A spaceX is said to be semi-T1 provided

that for every pair of distinct points x and y in X there exist sets U ∈ SO(X,x) and

V ∈ SO(X,y) such that y ∉U and x ∉ V .

Theorem 5.2. If Y is Hausdorff and f : X → Y is a subweakly quasi-continuous

injection, then X is semi-T1.

Proof. Let x1 and x2 be distinct points in X and let � be an open base for Y such

that sCl(f−1(V)) ⊆ f−1(Cl(V)) for every V ∈ �. Since Y is Hausdorff and f(x1) �=
f(x2), there exist disjoint open sets U and V in Y with f(x1)∈U and f(x2)∈ V , and

V ∈ �. Then, since f(x1) ∉ Cl(V), we have x1 ∈ X −f−1(Cl(V)) ⊆ X − sCl(f−1(V))
which is semiopen and does not contain x2. Therefore X is semi-T1.

The function in Example 3.6 is a subweakly quasi-continuous injection with a Haus-

dorff codomain and a non-T1-domain. Therefore, the conclusion that X is semi-T1 in

Theorem 5.2 cannot be strengthened to T1.

Since the restriction of the function f in Example 3.6 to the setA= {a,c} is not sub-

weakly quasi-continuous, we see that the restriction of a subweakly quasi-continuous

function can fail to be subweakly quasi-continuous. Noiri [5] proved that the restric-

tion of weakly quasi-continuous function to an open set is weakly quasi-continuous

and Arya and Bhamini [1] extended this result to α-open sets. Finally, Park and Ha [8]
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extended the result further to preopen sets. In what follows, we establish the analo-

gous result for subweakly quasi-continuous functions.

Theorem 5.3. If f : X → Y is subweakly quasi-continuous with respect to the base

� for Y and A is a preopen set in X, then f |A : A→ Y is subweakly quasi-continuous

with respect to the base �.

Proof. Let V ∈ �, then using (Noiri [7, Lemma 3.3]) we see that sClA(f |−1
A (V)) =

A ∩ sCl(f |−1
A (V)) = A ∩ sCl(f−1(V) ∩ A) ⊆ A ∩ sCl(f−1(V)) ⊆ A ∩ f−1(Cl(V)) =

f |−1
A (Cl(V)). Therefore, f |A : A → Y is subweakly quasi-continuous with respect to

the base �.

In Theorem 5.3, if we let � be the topology, then we have the following result.

Corollary 5.4 (Park and Ha [8, Theorem 3.8]). If f : X → Y is weakly quasi-

continuous and A is an preopen set in X, then f |A :A→ Y is weakly quasi-continuous.

Theorem 5.5. If f :X → Y is subweakly quasi-continuous and A is an open set in Y
containing f(X), then f :X →A is subweakly quasi-continuous.

Proof. Let � be an open base for Y for which sCl(f−1(V))⊆ f−1(Cl(V)) for every

V ∈ �. Then � = {V ∩A : V ∈ �} is an open base for the relative topology on A.

Let V ∩A ∈ �, where V ∈ �. Then sCl(f−1(V ∩A)) = sCl(f−1(V)) ⊆ f−1(Cl(V)) =
f−1(Cl(V)∩A). The proof is completed by establishing that Cl(V)∩A⊆ ClA(V ∩A).

Let y ∈ Cl(V)∩A and let W ⊆A be open in A with y ∈W . Since A is open in Y , W
is open in Y . Because y ∈ Cl(V), W∩V �= ∅. Therefore W∩(V∩A) �= ∅, which proves

that y ∈ ClA(V ∩A). Thus Cl(V)∩A⊆ ClA(V ∩A).
Now, it follows that f :X →A is subweakly quasi-continuous.

Park and Ha [8] defined a function f : X → A, where A ⊆ X, to be a weakly quasi-

continuous retraction provided that f is weakly quasi-continuous and f |A is the iden-

tity onA. It is then proved (Park and Ha [8, Theorem 3.15]) that, if f :X →A is a weakly

quasi-continuous retraction and X is Hausdorff, then A is semiclosed in X. We prove

the following comparable result for subweakly quasi-continuous functions.

Theorem 5.6. LetA⊆X and let f :X →X be a subweakly quasi-continuous function

such that f(X)=A and f |A is the identity on A. If X is Hausdorff, then A is semiclosed.

Proof. Assume A is not semiclosed. Let x ∈ sCl(A)−A. Let � be an open base for

the topology on X such that sCl(f−1(V)) ⊆ f−1(Cl(V)) for every V ∈�. Since x ∉ A,

x �= f(x). Because X is Hausdorff, there exist disjoint open sets V and W such that

x ∈ V , f(x) ∈ W , and V ∈ �. Let U ∈ SO(X,x). Then x ∈ U ∩V , which is semiopen

in X (Noiri [7]). Since x ∈ sCl(A), (U ∩V)∩A �= ∅. So there exists y ∈ (U ∩V)∩A.

Since y ∈ A, f(y) = y and therefore y ∈ f−1(V). Thus U ∩ f−1(V) �= ∅ and we

see that x ∈ sCl(f−1(V)). However, f(x) ∈ W , which is open and disjoint from V .

Hence f(x) ∉ Cl(V) or x ∉ f−1(Cl(V)), which contradicts the assumption that f is

subweakly quasi-continuous.

Lemma 5.7. If A ⊆ Y and f : X → A is weakly quasi-continuous, then f : X → Y is

weakly quasi-continuous.
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Proof. If V is an open set in Y , then sCl(f−1(V))= sCl(f−1(V∩A))⊆ f−1(ClA(V∩
A))= f−1(A∩Cl(V ∩A))= f−1(Cl(V ∩A))⊆ f−1(Cl(V)).

Thus a weakly quasi-continuous retraction satisfies the hypothesis of Theorem 5.6

and we have the following corollary.

Corollary 5.8 (Park and Ha [8, Theorem 3.15]). If f : X → A, where A ⊆ X, is a

weakly quasi-continuous retraction and X is Hausdorff, then A is semiclosed.

Theorem 5.9. Let Y be a Hausdorff space, f1 : X → Y continuous, and f2 : X → Y
subweakly quasi-continuous. Then {x ∈X : f1(x)= f2(x)} is semiclosed.

Proof. Let A = {x ∈ X : f1(x) = f2(x)} and let x ∈ X−A. Let � be an open base

for the topology on Y for which sCl(f−1
2 (V))⊆ f−1

2 (Cl(V)) for every V ∈�. Since Y is

Hausdorff and f1(x) �= f2(x), there exist disjoint open sets V and W in Y for which

f1(x)∈ V , f2(x)∈W , and V ∈�. Since f2(x) ∉ Cl(V), we have x ∈X−f−1
2 (Cl(V))⊆

X − sCl(f2(V)). Therefore x ∈ f−1
1 (V)∩ (X − sCl(f−1

2 (V))) ⊆ X −A. Since f−1
1 (V) is

open,X−sCl(f−1
2 (V)) is semiopen, and the intersection of an open set and a semiopen

set is semiopen (Noiri [7]), we see that X−A is semiopen and that A is semiclosed.

Corollary 5.10. Let Y be Hausdorff, f1 : X → Y continuous, and f2 : X → Y sub-

weakly quasi-continuous. If f1 and f2 agree on a dense subset of X, then f1 = f2.
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