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THERMOELASTICITY WITHOUT ENERGY DISSIPATION
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Thermoelastic equations without energy dissipation are formulated for a body which has
previously received a large deformation and is at nonuniform temperature. A linear theory
of thermoelasticity without energy dissipation for prestressed bodies is derived and the
uniqueness theorem for a class of mixed initial-boundary value problems is established.
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1. Introduction. The so-called second sound effect has been given increasing atten-
tion in recent decades. This effect arises from the possible transport of heat by a wave
propagation process rather than diffusion. Many articles have been devoted to the de-
velopment of the generalized theory of thermoelasticity that predicts a finite speed
for heat propagation. Lord and Shulman [11], employing a modified Fourier’s law,
developed what now is known as extended thermoelasticity. Green and Lindsay [6],
based on an entropy production inequality proposed by Green and Laws [5], formu-
lated temperature-rate dependent thermoelasticity that includes the temperature-rate
among constitutive variables. Lebon [10] formulated heat-flux dependent thermoelas-
ticity on the basis of a nonclassical approach to thermodynamics which includes the
heat flux among the constitutive variables and assumes an equation of evolution for
the heat flux. All these theories yield governing systems of hyperbolic equations and
predict finite speed for heat propagation.

Recently, Green and Naghdi [7] reexamined the basic postulates of thermomechan-
ics. They postulated three types of constitutive repose functions for the thermal phe-
nomena and, accordingly, formulated three models of thermoelasticity. The nature of
these three types of constitutive functions [8] is that when the respective theories are
linearized, model I theory is the same as the classic heat conduction theory (based
on Fourier’s law); model II theory predicts a finite speed for heat propagation and
involves no energy dissipation, now referred to as thermoelasticity without energy
dissipation; model III theory permits propagation of thermal signals at both finite and
infinite speeds and there is a structural difference between these field equations and
those developed in [5, 6, 10, 11]. Ciarletta [3] later formulated a theory of micropolar
thermoelasticity without energy dissipation. Detailed and comprehensive references
to the developments of generalized thermoelasticity are found in two nice review pa-
pers by Chandrasekharaiah [1, 2].

In this paper, we adapt the postulates made by Green and Naghdi [7] and formulate
a thermoelasticity theory without energy dissipation for solids which have previously
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received a large deformation and are at nonuniform temperatures. The classical theory
for prestressed thermoelastic bodies has been obtained by Green [4] for the isothermal
case and by Iesan [9] for the nonisothermal case.

2. Nonlinear formulae. Consider a thermoelastic solid whose configuration changes
continuously, under external mechanical actions and heating, from an original refer-
ence state Qg, with uniform temperature T, and uniform thermal-displacement &g, to
adeformed state Q. Let Q¢ and 0Q be the closed surface of Q¢ and Q, respectively. Let
Xk denote the position of a particle X in the reference state, and xj = xy (X1, X>, X3,t)
the position in the deformed state, where t is the time. We assume that x; is suffi-
ciently smooth and det(x; 4) > 0 in order for this deformation to be possible.

In the material description, the basic nonlinear equations in thermoelasticity with-
out energy dissipation take the form [2, 3, 8]

Tyig +pofi = poXi, (2.1)
poTn = poS + Tk k (2.2)

in Qg x [0,ty), where t is some time instant that may be infinite. In the above equa-
tions, T is the absolute temperature, S is the external rate of heat supply per unit
mass and time, po is the initial mass density, Tj; is the first Piola-Kirchhoff stress
tensor (Tj; #+ Tij), fi is the external body force per unit mass, n is the entropy per
unit mass, ®x is the internal entropy flux vector. If Qx denotes the flux of heat across
surfaces in the deformed body that were originally coordinate planes perpendicular
to the Xg-axes through the point X, measured per unit time, then Qg = T®x. Through
this paper, a superposed dot stands for the material time derivative while a comma
followed by a subscript denotes partial derivatives with respect to the spatial coordi-
nates, in the deformed configuration if the subscript is a minuscule, in the reference
configuration if the subscript is a majuscule; that is, g = 0g/0X; and g; = 0g/0x;.
Einstein summation on repeated indices is also used throughout this paper.
The constitutive variables are the strain tensor E4p, T, and « ; with the geometric
equations
2EA = Xi,AXiB — 0B, (2.3)

where « is the thermal-displacement (w& = T) and 6 4p is the Kronecker delta.
The constitutive equations are

b4 =\I’(EU,T,O(J), (24)
oY
N BT]I’ Ty =xi1Ty, (2.5)
0 oY
pon=—5p K= ga0 (2.6)

where ¥ is the Helmholtz free-energy per unit volume.

Unlike other theories of hyperbolic thermoelasticity, in obtaining the above consti-
tutive equations, the second law of thermodynamics in the form of an entropy produc-
tion inequality was not used. Rather, this inequality is automatically satisfied [2, 8].
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3. Small deformation superposed on a large deformation. In this section, we con-
sider three states of the solid, the initial state Q, the first deformed state Q, and the
final deformed state Q* corresponding respectively to the uniform temperature Ty,
uniform thermal-displacement o and zero displacement; temperature T, thermal-
displacement «, and displacement v;; and temperature T*, thermal displacement o*
and displacement v; + u;. Following Iesan [9], we call Q the primary state and Q*
the secondary state. Thermodynamic quantities and forces associated with Q* are
denoted by an asterisk. The position coordinates of the particle X at time ¢ in Q* will
be denoted by y; = y; (X1, X2, X3,t) with det(y; 4) > 0.

We define the incremental displacement u; and incremental temperature 6 as

u; =Yyi—Xi, 0=T*-T. 3.1)

Here we consider the case in which u; and 0 are small; that is, there exists a real
parameter &, small enough for its square and higher powers to be neglected, such that

Ui = €U, 0=c¢0, (3.2)

where u; and 6’ are independent of ¢.
In the secondary state Q*, the basic equations are of the same form as those in the
primary state Q. We have the equation of motion

T} +Pofi = poyi, 3.3)
the energy equation
poT*N* = poS* + T*®f x, (3:4)
the geometric equations
2EXp = ¥i,aYiB — 0B, (3.5)
and the constitutive equations
Y5 =Y(Ef;, T &%), (3.6)
ov*
Tf = S T} = yii T}y, (3.7)
J1
ov* ov*
* _ * _
.0077 - aT*’ K ao(;}} - (3.8)

Next, we derive the equations satisfied by u; and 0. Keeping (3.2) in mind, we get
the following second-order approximation:

‘F(EI*],T*,O(}) —‘P(EIJ,T, (X’K) = Gl]J(EI*J—Eu) +aK(0(j<—0(,K) —ab
1
+ 5 Cimn (Efy = Ery) (Ejpy = Emn) = by (Efy — E1) 0

1 1
+§bUK(EI*J—E[J)(O(j<—O(’K) + Edez

1
—dig (e —xg)0+ Edm(tx}} —og) () —xp),
(3.9)
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where byj, brjk, and di; have certain symmetries in their indices, and that

oY
Crymn = Cuniy = Crmun, ag = dok Ok, (3.10)
oY oY
a=—3p =pPon, au—a—Tu- (3.11)

Substituting (3.9) into (3.7) and (3.8), we obtain

pon* = pof]+d9+b1](El*J—E1]) +dK(O(j<—D(,K),
T}y = Tiy + Crymn (Expy — Emn) = by 0 + bryx (o« — o k), (3.12)
CI’I? = (I)K-l-b[JK(EI*J—E[J) —dKQ-i-dKL(O(i —O(’L).

Since it is required that ®x vanishes at equilibrium, that is, for ¢ x = 0 and Tx = 0, we
also must have that
bijk=0, dg=0 if Tx=0. (3.13)

From geometric equations and the relation
YiA = XiA+UjA, (3.14)

we get that
2E}p = 2EAp + Xi AUip + XipUiA, (3.15)

where we have used the fact that u;s are small, and hence, the terms like u; 4u; p have
been neglected. Introducing the notation

1
eap = E(Xi,Aui,B +XipUiA), (3.16)
we find that
EZB:EAB-I-QAB. (3.17)
Let
t t
T:J (T*—T)dt:J odt, (3.18)
0 0
we have
t t
(X=J (T—To)dt+Tot+O(o, o* =I (T*—To)dt-i-Tot-l-(Xo, (3.19)
0 0
t ¢
o<*—o<=J (T*—To)dt—I (T-Ty)dt =T, -k =Tk. (3.20)
0 0

Substituting (3.17) and (3.20) into (3.12), we find that

p()lf‘< :p0n+d9+bueu+d1<'r,1<, (321)
T}y = Ty + Ciymnemn — b1y 0 + bk T, (3.22)
(I);? =¢K+bIJKeIJ_dK0+dKLT,L- (323)
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From (2.5), (3.7), (3.14), and (3.22), we find that
Tj*l = Tji + T]]’ui,[ + C][Min‘IeKL — b][Xi‘]Q + b]]Kxi‘IT‘K. (324)
If we denote
i =T5 =Ty,  @x=%% -, y=n"-n, (3.25)
then we have
poY = do + bueu + dKT,K,
1y = Tiruig + CrunXigemn —byrxi 0+ bygxi Tk, (3.26)
@k =bxery—dg0+diLT .
Subtracting (2.1) and (2.2) from (3.3) and (3.4), respectively, we find the incremental
equations
iy + poFi = potti,  poTy = pos+Pkk, (3.27)
where F; = f — f; and s = §* - S.

4. Linear theory of thermoelasticity for initially stressed bodies. In this section,
we consider the special case when the primary state Q of the solid is identical with
that of the initial solid Qg so that x; = X1, x2 = X», X3 = X3, and we suppose that
Q) is subjected to an initial stress and an initial heat flux caused by the nonuniform
initial temperature Ty. Due to the action of external loadings and heating, the solid Qg
undergoes a deformation. There arise displacements u; = eu}, thermal displacement
«, and temperature increment 6 = €0’. Here, we systematically neglect all powers of €
above the first, except in the free energy function ¥, where we retain quadratic terms
of €.

The work of Section 3 can be applied to this special case and yields a linear theory
of thermoelasticity without energy dissipation in the presence of initial stress and
heat flux. In this case, we have

Xi,[=5i[, T=To, EAB =O, X = Ko, T=0. (4.1)

All coefficients defined in the previous section are now evaluated at E g = 0, & = o,
and T = Ty. For convenience, from now on, we change all the majuscule subscripts
into minuscule subscripts. From (3.17), we find that

1
eij = 5 (uij+uji). 4.2)

The governing equations (3.27) become
i, + poFi = polti, poToy = pos+To@rik- (4.3)
The constitutive relations (3.26) reduce to
poy =dO+biju;j+dgTpk,
TMij = dijmnUmmn —bijO +Dijk T, (4.4)
@i = bijruij— A0+ dm T m,

where d;ijmn = Cijmn + 0 jm Tin With 6, being the usual Kronecker delta.
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The coefficients Cijmn, bij, bijk, dvm, dk, and d are functions of the position coor-
dinates. The coefficients C;jmn, have the symmetry as in (3.10), b;; and dym, have the
usual symmetry about their indices and that b;jx = bjik.

The functions Ti, characterize the initial stress and they can be arbitrary functions
apart from satisfying the energy equation for the static case and the condition that
Qp is in equilibrium. The presence of the initial heat flux vector is determined by the
nonuniformity of the initial temperature T,. This fact implies the appearance of the
coefficients b;jx and dy in the expression for @y. If Ty is constant, then b;jx = 0 and
dy =0.

Substituting (4.4) into (4.3), we find the governing equations in the linear theory of
thermoelasticity for initially stressed bodies

(djimnumm —bij0 +bijiTk) ;+poFi = poiii, (4.5)
To (d@ +Dbijij+ dké,k) —To (bijkl;ti,j — dké +dim Q,m),k = PoS. (4.6)

If T;,, = 0 and Ty is a constant, for nonhomogeneous and anisotropic materials, the
above equations reduce to

(Cijmnum,n - bije)_j +poFi = poliy,

i " . (4.7)
Ty (d@ + bijui,j) e ) (dkmelm)yk = pPoS.

For homogeneous and isotropic materials, the above equations reduce to the same
set of governing equations as developed in [8].

5. Uniqueness theorem. In this section, we establish a uniqueness theorem for a
class of initial-boundary value problems associated with the governing equations (4.5)
and (4.6) for prestressed solids.

In the context of the theory considered, an initial-boundary value problem consists
in determining the functions u;(x,t) and 6(x,t) for x € Q and t > 0, by solving (4.5)
and (4.6) with F;(x,t), s(x,t), Tin, and Ty being prescribed functions for x € Q and
t > 0; under the initial conditions

ui(x,0) =0, 1ui(x,00=0, 0(x,00=0, 0(x,0)=0 forxeQ, (5.1)

and the boundary conditions for ¢t > 0

Ui =1 for x € 00, m;in; = pi for x € 0Q),
_ (5.2)
0=0 for x € 0Q», Topxng =4 for x € 0Q)5,

where 14, pi, 0, and q are prescribed functions in the domains of their definition,
0Q;+0Qf = 0Q for i = 1,2 and n; is the outward normal vector to Q.
To establish the uniqueness theorem, we impose the following restrictions on the
material constants:
(i) the initial mass density po and the specific heat d are strictly positive; that is,
there exist positive constants v and do with the same dimensions as of py and
d, respectively, such that

po=7v >0, d>dy>0; (5.3)
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(ii) dijmn is positive definite in the sense that there exists a positive constant j
with the same dimension of d;jmn, such that

dijmngijgmn = Bgijgij: dijmn = dmnij = djimn (5-4)

for all second order tensors &;;;
(iii) the heat conductivity tensor dy;, is symmetric and positive definite in the sense
that there exists a positive constant b such that

dkmgkgm = bgk&k! dkm = dmk (5.5)

for all vectors &;
(iv) there exists a constant h with the same dimension of b such that

4b%, < Bh, h<b. (5.6)

THEOREM 5.1. If assumptions (i), (ii), (iii), and (iv) hold and Ty > 0, then there exists

at most one solution to the initial-boundary value problem defined by (4.5), (4.6), (5.1),
and (5.2).

PrROOF. It suffices to show that for F; = 0, § = 0, and homogeneous boundary con-
ditions, the solution is trivial.
From (4.5), the homogeneous boundary conditions and integration by parts, we get

j poliin;dQ = I (dijmnum,n _bij9+bijkT,k),juidQ
o o

(5.7)
=— JQ (dijmnUmn —Dbij0+DbijrT i) ;jdQ;

that is,
JQ (pottitL; + dijmnWijUmn —bijli 0+ hijkT,kL'Li'j) dQ =0. (5.8)

Taking into consideration the homogeneous initial conditions and integrating (4.6),
we find

(dé +bijn i+ dx0x) — (bijkui,j —d0+ dka,m),k =0. (5.9)

Multiplying this by 0 and integrating over Q, we find

J (d9+bijui,j+dke,k)9dQ—J (Bijtti; — did+ dimTon) 0dQ=0.  (5.10)
Q Q !
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Using the homogeneous boundary conditions and integration by parts, we find
J [AO0 + drm O kT + bijxui j0x +b;ij01; ;1dQ = 0. (5.11)
Q
Adding (5.8) and (5.11), we find
L. . : d
JQ [pouiui + dijmnui,jum,n +d00+ dkme,k'r,m + bijk E (u,',j‘r,k)] dQ = 0; (5.12)
that is,
d o >
E 0 [pouiui + dijmnui,jum,n +dO+ dka'kT,m + Zbijkui,jT,k] dQ = 0. (5.13)
Taking into consideration the homogeneous initial conditions, we find
JQ [pouﬂ;ti + dijmnui,jum,n + d92 + dka,kT’m + Zbijkui,j'r,k] dQ =0. (5.14)
Using Schwartz inequality, we find
bizjk
B
From (5.14), (5.15), and the assumption (i), (ii), (iii), and (iv), we find that

B
| Zbijkui’jT,k | =< Eui,jui,j + TkTk = Eui,jui,j + hT,kT,k. (5.15)

J |:’I"’l/'Li’l/'Li + gui,jui,j + d092 +(b- ]’l)T,kTyk] dQ < 0. (5.16)
Q
Equation (5.16) readily yields the trivial solution

ui(x,t) =0, 0O0(x,t)=0, forxeQ, t=0. (5.17)
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