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ON INCIDENCE ALGEBRAS AND DIRECTED GRAPHS
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The incidence algebra I(X,R) of a locally finite poset (X,≤) has been defined and studied
by Spiegel and O’Donnell (1997). A poset (V ,≤) has a directed graph (Gv,≤) represent-
ing it. Conversely, any directed graph G without any cycle, multiple edges, and loops is
represented by a partially ordered set VG . So in this paper, we define an incidence algebra
I(G,Z) for (G,≤) over Z, the ring of integers, by I(G,Z)= {fi,f∗i : V×V → Z}where fi(u,v)
denotes the number of directed paths of length i from u to v and f∗i (u,v) = –fi(u,v).
When G is finite of order n, I(G,Z) is isomorphic to a subring ofMn(Z). Principal ideals Iv
of (V ,≤) induce the subdigraphs 〈Iv〉 which are the principal ideals �v of (Gv,≤). They
generate the ideals I(�v ,Z) of I(G,Z). These results are extended to the incidence algebra
of the digraph representing a locally finite weak poset both bounded and unbounded.
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1. Introduction. The incidence algebra I(X,R) of a locally finite posetX over a com-

mutative ring R with identity is discussed in much detail by Spiegel and O’Donnell [5].

Every poset (V ,≤) has a directed graph (Gv,≤), or (G,≤) for short, representing it.

The directed graph (G,≤) is free of cycles and multiple arcs. It is natural for (G,≤) to

have an incidence algebra whose properties depend on those of the directed graph.

In this paper, we define and study an incidence algebra I(G,Z) for (G,≤) over the

ring Z of all integers. Section 2 contains the basic results and definitions used in this

paper. Section 3 deals with I(G,Z), the incidence algebra of (G,≤) representing a finite

poset (V ,≤) of cardinality n. Ideals of I(G,Z) are given through the principal ideals

of (G,≤) which are the subdigraphs induced by the principal ideals of (V ,≤). An

extension of the results given in Section 3 to the digraph representing a locally finite

weak poset (V ,≤) bounded or unbounded is the content of Section 4.

2. Definitions and basic results. We consider the directed graph (Gv,≤) repre-

senting a locally finite partially ordered set (V ,≤). The terminology introduced here

is used throughout the paper.

Definition 2.1. For any u ≤ v in (V ,≤), [u,v] = {w : u ≤ w ≤ v} is an interval

of (V ,≤). The length of [u,v] denoted by l[u,v] is the length of the longest chain

in [u,v]. A poset (V ,≤) is locally finite if l[u,v] is finite for each [u,v] in (V ,≤);
and (V ,≤) is bounded if there is a k > 0 such that l[u,v] ≤ k for all [u,v] in (V ,≤).
Otherwise (V ,≤) is unbounded.
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Definition 2.2. The directed graph (Gv,≤) associated with a locally finite poset

(V ,≤) is defined as (Gv,≤) = (V ,E) where V = (V ,≤) and E = {arcs
→
uv ;u < v};

(Gv,≤) has no cycles nor multiple arcs.

Lemma 2.3 (see [5]). A finite poset (V ,≤) can be labelled V = {v1,v2, . . . ,vn} so that

vi ≤ vj implies that i≤ j.
Proposition 2.4 (see [4]). The vertices of a finite directed graph G = (V ,E) can

be labelled v1,v2, . . . ,vn such that
→
vivj ∈ E implies that i < j, if and only if G has no

cycles.

Note 2.5. Lemma 2.3 and Proposition 2.4 have motivated the orientation of arcs

in (Gv,≤).
Definition 2.6 (see [5]). Let (X,≤) be a locally finite poset and R a commutative

ring with identity. The incidence algebra I(X,R) of X over R is defined by

I(X,R)= {f :X×X �→R : f(x,y)= 0 if x �y
}
, (2.1)

with operations defined by

(i) (f +g)(x,y)= f(x,y)+g(x,y);
(ii) (f ·g)(x,y)=∑x≤u≤y f(x,u)g(u,y);

(iii) (rf)(x,y)= rf(x,y), for all r ∈R; f ,g ∈ I(X,R).
Definition 2.7. For any v ∈ (V ,≤), let Iv = {u ∈ V : u ≤ v}; Iv is called the

principal ideal generated by v .

Definition 2.8. An ideal � of (Gv,≤) is an induced subdigraph of Gv such that

all directed paths with their terminal vertex in � are in �.

If Iv is a principal ideal of (V ,≤), 〈Iv〉, the subdigraph induced by Iv is the principal

ideal of G generated by v in (Gv,≤). Denote 〈Iv〉 by �v .

Notation 2.9. For the remaining part of the paper, the digraphs (G,≤) and (G∞,≤)
represent the finite poset (V ,≤) and the locally finite poset (V∞,≤), respectively.

3. An incidence algebra for (G,≤). In this section, we define an incidence alge-

bra I(G,Z) for the digraph (G,≤) representing the finite poset (V ,≤). Subalgebras

and ideals of I(G,Z) are defined through principal ideals of (G,≤). Assume that

V = {v1,v2, . . . ,vn}.
Definition 3.1. For u,v ∈ V , let pk(u,v) denote the number of directed paths of

length k from u to v and pk(v,u)= –pk(u,v).
For i= 0,1,2, . . . ,n–1, define fi,f∗i : V ×V → Z by

fi(u,v)= pi(u,v), f∗i (u,v)= –pi(u,v). (3.1)

The incidence algebra I(G,Z) of (G,≤) over the commutative ring Z with identity is

defined by I(G,Z) = {fi,f i∗ : V ×V → Z, i = 0,1,2, . . . ,n−1} with operations defined

as follows:

(i) for f ≠ g, (f +g)(u,v)= f(u,v)+g(u,v);
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(ii) (f ·g)(u,v)=∑w f(u,w)g(w,v);
(iii) (zf)(u,v)= zf(u,v), for all z ∈ Z; f ,g ∈ I(G,Z).

Remark 3.2. The function fl is the digraph analogues of χ ∈ I(X,R) [5]. The ma-

trix [fl,(vi,vj)] is the adjacency matrix of (G,≤) and fkl (vi,vj)= fk(vi,vj). For any

interval [u,v] with l[u,v]= k, fkl (u,v)= fk(u,v)= 0. For every f ∈ I(G,Z), there is

a constant m∈ Z such that fm(u,v)= 0, for all (u,v)∈ V ×V .

Definition 3.3. With each ideal �v = 〈Iv〉 of (G,≤) we associate an incidence

algebra,

I
(
�v,Z

)= {f ∈ I(G,Z) : f : Iv×Iv �→ Z
}
,

∀f ∈ I(�v,Z
)
, f
(
vi,vj

)= 0 ∀(vi,vj
) 	∈ Iv×Iv .

(3.2)

Remark 3.4. If (H,≤) is a subdigraph of (G,≤), then I(H,Z) is a subalgebra of

I(G,Z) [5]. In particular, I(�v,Z) is a subalgebra of I(G,Z); I(�v,Z) is called the sub-

algebra generated by the vertex v .

Remark 3.5 (see [5]). If S is an ideal of Z, I(G,S) = {f ∈ I(G,Z);f(u,v) ∈ S} is a

subalgebra of I(G,Z).

Proposition 3.6. For each principal ideal �v of (G,≤), I(�v,Z) is an ideal of the

ring I(G,Z).

Proof. Let �v be a proper principal ideal of (G,≤). Denote the elements of I(G,Z)
and I(�v,Z) by f and f ′, respectively. For all f ′ ∈ I(�v,Z), there is a unique

f ∈ I(G,Z) such that f ′(u,w) = f(u,w) for all (u,w) ∈ Iv × Iv ; and f ′(u,w) = 0

for all (u,w) 	∈ Iv×Iv .

Hence for any (u,w)∈ V ×V , f ,g ∈ I(G,Z), g′ ∈ I(�v,Z)

(
fg′

)
(u,w)=



(f ,g)(u,w), if (u,w)∈ Iv×Iv ,
0, otherwise,

(3.3)

with similar values for (g′f)(u,w) also.

Consequently, fg′ and g′f ∈ I(�v,Z), and I(�v,Z) is an ideal of I(G,Z).

Remark 3.7. The incidence algebra I(G,Z) is isomorphic to a subring of the ring

of upper triangular matrices over Z [5]. In general, every ideal of Mn(Z) has the form

Mn(S) for some ideal S of Z [3].

Proposition 3.8. Every ideal of I(G,Z) has the form I(�v,Z) for some principal

ideal �v of (G,≤).
Proof. Let S be a proper ideal of the ring I(G,Z). Then S = I(H,Z) for some sub-

digraph (H,≤) of (G,≤). For all f ∈ I(G,Z) and g′ ∈ S, fg′ = g′f ∈ S.

Consequently, there is an h′ ∈ S such that fg′ = h′ satisfying (fg′)(u,v) =
h′(u,v)= pk(u,v) for some k and for all u,v in V(H).
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Then for all (u,v)∈ V(H)×V(H), the number of paths of length k in H from u to

v is the same as that in G.

Hence for any v ∈ V(H), H contains all the directed paths terminating in v . Then

H = �v for some v .

4. The incidence algebra I(G∞,Z). An extension of Proposition 2.4 is obtained by

the author for locally finite directed graphs [2]. This provides an isomorphism between

I(G∞,Z) and a subring of the ring of upper triangular matrices over Z. Also we have

extended Propositions 3.6 and 3.8 to bounded as well as unbounded locally finite weak

posets. It is assumed that the poset (V ,≤) is countable.

Definition 4.1. A locally finite poset (V ,≤) is weak if only finitely many chains

intersect at every element v in V .

Definition 4.2. A directed graph G = (V ,E) is locally finite if every vertex is of a

finite degree.

Definition 4.3. A vertex v of the directed graph (G∞,≤), such that d(v) ≠ 0, is

called a source or atom if there is no other vertex u such that u≤ v .

Proposition 4.4 (see [2]). Let G = (V ,E) be a locally finite, acyclic digraph where V
is countable; V can be labelled {v1,v2,v3, . . .} such that

→
vivj ∈ E implies that i < j if

and only if

(i) the set S of its sources is nonempty and finite;

(ii) for each v ∈ V and s ∈ S such that
→
sv ∈ E, any maximal directed path termi-

nating in v is of finite length.

Definition 4.5. Let (V ,≤) be a locally finite weak poset and (G∞,≤) the digraph

representing (V ,≤). The incidence algebra I(G∞,Z) of (G∞,≤) over the ring Z of inte-

gers is given by

I
(
G∞,Z

)= {fi,f∗i : V ×V �→ Z} (4.1)

satisfying the operations given in Definition 3.1.

Definition 4.6. An infinite matrix A = [aij] is row (column) finite if aij ≠ 0 for

finitely many j(i).

Note 4.7. (i) Each f ∈ I(G∞,Z) is represented by a matrix [f ] where [f ]i,j =
f(vi,vj) and [f ] is both row and column finite,M∞(Z) denotes the ring of row and col-

umn finite matrices over Z. The incidence algebra I(G∞,Z) is isomorphic to a subring

of M∞(Z).
(ii) A characterization of infinite directed graphs for which [f ] is nilpotent is ob-

tained by the author in [1].

Proposition 4.8. Let (V ,≤) be a weak, locally finite poset satisfying the following:

(i) the set S of its atoms is nonempty and finite;

(ii) for each v ∈ V , s ∈ S such that s ≤ v , any chain with v as upperbound is of finite

length. Then I(G∞,Z) is isomorphic to a subring of the ring of upper triangular

matrices over Z.



ON INCIDENCE ALGEBRAS AND DIRECTED GRAPHS 305

Proof. The digraph (G∞,≤) is locally finite. By Proposition 4.4, f(vr ,vs) ≥ 0 for

all r ≤ s and for all f ∈ I(G∞,Z). Hence every f has a representation as an upper

triangular matrix over Z.

Definition 4.9. In a bounded weak, locally finite poset (V ,≤) a principal ideal

Iv = {u :u≤ v}. The corresponding principal ideal of (G∞,≤) is given by �v = 〈Iv〉.
Proposition 4.10. Let (V ,≤) be any weak, locally finite bounded poset and �v a

principal ideal of (G∞,≤). Then

(1) I(�v,Z) is a subalgebra of I(G∞,Z);
(2) I(�v,Z) is an ideal of I(G∞,Z).

Note 4.11. This follows from Propositions 3.6 and 4.4.

Proposition 4.12 (see [5]). Let (V ,≤) be an unbounded weak poset. Then V con-

tains a subpartially ordered set isomorphic to Z+, Z–, or UCnwhere Cn denotes a chain

of length n.

Remark 4.13. When (V ,≤) is unbounded, the principal ideals of (V ,≤) and

(G∞,≤) are not well defined. Hence Proposition 4.4 is not true for unbounded posets,

in general.

But there are unbounded, locally finite posets satisfying Proposition 4.4. As an ex-

ample we have (V ,≤)= (Z+, usual ordering).
Let (V ,≤) be an unbounded, locally finite, weak poset such that I(G∞,Z) is isomor-

phic to a subring of the ring of upper triangular matrices. Then

(i) principal ideals of (G∞,≤) are defined as �v = 〈Iv〉;
(ii) for each �v , I(�v,Z) is a subalgebra of I(G∞,Z);

(iii) for every �v , I(�v,Z) is an ideal of I(G∞,Z).
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