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NON-UNICITÉ DU PROBLÈME DE CAUCHY
POUR DES OPÉRATEURS DIFFÉRENTIELS

QUASI-HOMOGÈNES

KHALGUI-OUNAÏES HELLA
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Nous démontrons que si P est un opérateur différentiel quasi-homogène d’ordre m sur
une partie ouverte Ω de Rn, à coefficients de classe C∞, tel que la m-partie principale est
à coefficients réels ; et que x0 ∈Ω, S = {x ∈Ω :φ(x)=φ(x0)} est une hypersurface non
caractéristique en x0 et strictement non pseudoconvexe avec {{pm,φ},φ}(x0,ξ0) ≠ 0 et
dqpm(x0,ξ0)≠ 0, alors P n’a pas l’unicité de Cauchy par rapport à S.

Classification 2000 des Sujets Mathématiques: 35A07.

1. Introduction. Soit Ω une partie ouverte de Rn et S une hypersurface de Ω, pas-

sant par un point x0, définie par

S = {x ∈Ω :φ(x)−φ(x0
)= 0

}
, (1.1)

où φ est une fonction réelle de classe C∞ vérifiant dφ(x0)≠ 0.

Définition 1.1. Soit P un opérateur différentiel défini sur Ω, on dit que P n’a

pas l’unicité de Cauchy par rapport à S s’il existe un voisinage V de x0 dans Ω, des

fonctions a et u≠ 0, de classe C∞ sur V tel que suppa⊂ {x ∈Ω :φ(x)≤φ(x0)},

V ∩suppu= {x ∈Ω :φ(x)≤φ(x0
)}∩V,

Pu+au= 0 dans V.
(1.2)

Alinhac [1] a donné des résultats de non-unicité pour des opérateurs du type

p
(
x,t,σqξ,στ

)= σmpm(x,t,ξ,τ)+σm−kpm−k(x,t,ξ,τ)+··· , (1.3)

où x ∈Rn−1, t ∈R, q ≥ 1.

Dans ce papier, nous donnons des conditions suffisantes de non-unicité du pro-

blème de Cauchy pour des opérateurs différentiels quasi-homogènes, réels, à

coefficients de classe C∞.

Les techniques utilisées dans ce travail sont rattachées aux constructions de l’op-

tique géométrique qui sont développées dans les travaux de Plis [4], Hörmander [2] et

Alinhac [1].
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2. Notation et définitions. Soit Ω une partie ouverte de Rn et soit (x,ξ)∈ T∗(Ω),
x = (x1, . . . ,xn).

Soit m= (m1, . . . ,mn) un multi-indice tel que

0<m1 ≤ ··· ≤mq−1 <mq = ··· =mn, (2.1)

et α= (α1, . . . ,αn)∈Nn.

On note

|α :m| =α1m−1
1 +α2m−1

2 +···+αnm−1
n ,

Dα =Dα1
1 ···Dαnn avec Dj = 1

i
∂
∂xj

, ∇q =
(

0, . . . ,0,
∂
∂xq

, . . . ,
∂
∂xn

)
.

(2.2)

Définition 2.1. On dit que P est un opérateur différentiel quasi-homogène d’ordre

m sur Ω si

P(x,D)=
∑

|α:m|≤1

aα(x)Dα. (2.3)

La m-partie principale de P est l’opérateur

Pm(x,D)=
∑

|α:m|=1

aα(x)Dα. (2.4)

Définition 2.2. Soient f et g deux fonctions de classe C∞ sur T∗Ω. On désigne

par {f ,g} le crochet de Poisson quasi-homogène de f , g défini par

{f ,g} =
n∑
j=q

(
∂f
∂ξj

∂g
∂xj

− ∂f
∂xj

∂g
∂ξj

)
. (2.5)

Définition 2.3. Soit x0 ∈ Ω et φ une fonction de classe C∞ dans Ω telle que

∇qφ(x0) ≠ 0. L’hypersurface S = {x ∈ Ω : φ(x) = φ(x0)} est dite strictement non

pseudoconvexe au sens quasi-homogène par rapport aux bicaractéristiques de P
issues de x0, si elle est non caractéristique et vérifie la condition suivante :

∃ξ0 ∈Rn−{0} : pm
(
x0,ξ0

)=Hpmφ(x0,ξ0
)= 0, H2

pmφ
(
x0,ξ0

)
< 0, (2.6)

avec Hpmφ= {pm,φ} et H2
pmφ= {pm,{pm,φ}}.

3. Énoncé du théorème

Théorème 3.1. Soit P un opérateur différentiel quasi-homogène d’ordre m, à

coefficients de classe C∞ sur une partie ouverte Ω de Rn, tel que la m-partie princi-

pale est à coefficients réels. Soit x0 ∈Ω et

S = {x ∈Ω :φ(x)=φ(x0
)}

(3.1)

une hypersurface non caractéristique en x0 et strictement non pseudoconvexe au sens

quasi-homogène par rapport aux bicaractéristiques de P issues de x0. Pour ξ0 vérifiant

(2.6), on suppose que

(i) {{pm,φ},φ}(x0,ξ0)≠ 0 ;
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(ii) dqpm(x0,ξ0)≠ 0 où dqpm = (0, . . . ,0,dξqpm,. . . ,dξnpm).
Alors il existe un voisinage W de x0 et deux fonctions a et u≠ 0, de classe C∞ sur W ,

s’annulant dans {
x ∈W :φ(x) >φ

(
x0
)}

(3.2)

et vérifiant

Pu+au= 0, x0 ∈ suppu. (3.3)

Exemple 3.2. Soit P l’opérateur différentiel quasi-homogène défini sur R5, d’ordre

m= (1,2,4,4,4), de symbole

p
(
y1,y2,x1,x2, t,η1,η2,ξ1,ξ2,τ

)
= τ4+τ2[(1+t)ξ2

2+ξ2
1

]+(1+t)[(1+t)η2
2−ξ2

1ξ
2
2+t3η1

]+ x1ξ3
2 .

(3.4)

Pour x0 = (0,0,0) ∈ R2×R2×R, S = {(y,x,t) ∈ R5 : t = 0} et ξ0 = (2,1,1,1,0), l’opé-

rateur P vérifie les hypothèses du théorème 3.1, il en résulte que P n’a pas l’unicité

de Cauchy par rapport à S.

4. Preuve du théorème 3.1. Toutes les hypothèses étant invariantes par change-

ment de coordonnées respectant les coordonnées quasi-homogènes, on peut donc se

ramener aux variables (y,x,t)∈Rq−1×Rn−q×R, dans un voisinage V de x0 = (0,0,0),
avec

S = {(y,x,t)∈ V : t = 0
}
, P = P(y,x,t,Dy,Dx,Dt). (4.1)

On pose s = λ(t−δ) avec λ= δ−θ , δ > 0 et θ > 1. L’opérateur P s’écrit alors dans les

coordonnèes (y,x,s),

P
(
y,x,t,Dy,Dx,Dt

)= P(y,x,δ+ s
λ
,Dy,Dx,λDs

)
. (4.2)

Prenons la solution u sous la forme

u
(
y,x,δ+ s

λ

)
= ei(

∑q−1
j=1 σ

1/mj ηjyj+σ1/mn(ξ̃(y,x,δ)+(s/λ)τ(y,x,δ)))

×eνϕ(y,x,δ,s)e−γ(y,x,δ)w(y,x,δ,s).
(4.3)

On définit un opérateur P̃ par Pu/u= P̃w/w avec

P̃
(
y,x,δ,s,Dy,Dx,Ds

)
=P

(
y,x,δ+ s

λ
,
(
σ 1/mjηj+σ 1/mnξ̃+σ 1/mn s

λ
∇jτ+ νi ∇jϕ−

1
i
∇jγ+Dyj

)
1≤j≤q−1

,

σ 1/mn∇xξ̃+σ 1/mn s
λ
∇xτ+νi ∇xϕ−

1
i
∇xγ+Dx,σ 1/mnτ+1

i
λνϕ′

s+λDs
)
,

(4.4)

où ∇x désigne le vecteur gradient par rapport à la variable x et ∇j désigne la dérivée

par rapport à la variable yj .
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4.1. Choix de η, ξ̃, τ

Lemme 4.1. Soit pm le m-symbole principal de P ; ζ0 = (η0,ξ0,τ0) satisfaisant les

hypothèses du théorème 3.1. Alors on peut trouver un voisinage de l’origine dansRq−1×
Rn−q ×R, des fonctions η(y,x,t) = (η1,η2, . . . ,ηq−1)(y,x,t), ξ(y,x,t) = (ξ1,ξ2, . . . ,
ξq−1)(y,x,t),τ(y,x,t) et δ0 > 0 tels que pour tout 0< δ< δ0 et (y,x) près de l’origine

dans Rq−1×Rn−q on a

pm
(
y,x,δ,η,∇xξ,τ

)= ∂pm
∂τ

(y,x,δ,η,∇xξ,τ)= 0,(
η(0),∇xξ(0),τ(0)

)= ζ0.
(4.5)

Preuve. On prend pour tout (y,x,t), η(y,x,t)= η0 c’est-à-dire ηj = η0j .

D’après les hypothèses (2.6) et le (i) du théorème 3.1, on a

∂pm
∂τ

(
0,ζ0

)= 0,
∂2pm
∂τ2

(
0,ζ0

)
≠ 0, (4.6)

il résulte d’après le théorème des fonctions implicites qu’il existe une fonction q de

classe C∞,

q : V
(
0,η0,ξ0

)
�→ V(τ0

)⊂R, (y,x,t,η,ξ) � �→ q(y,x,t,η,ξ), (4.7)

vérifiant

q
(
0,η0,ξ0

)= τ0,
∂pm
∂τ

(
y,x,t,η,ξ,q(y,x,t,η,ξ)

)= 0. (4.8)

On note

F(y,x,t,η,ξ)= pm
(
y,x,t,η,ξ,q(y,x,t,η,ξ)

)
, (4.9)

on a alors F(0,0,0,η0,ξ0)= pm(0,0,0,η0,ξ0,τ0)= 0 et pour tout 1≤ j ≤n−q,

∂F
∂ξj

(y,x,t,η,ξ)= ∂pm
∂ξj

(
y,x,t,η,ξ,q(y,x,t,η,ξ)

)

+ ∂q
∂ξj

(y,x,t,η,ξ)
∂pm
∂τ

(
y,x,t,η,ξ,q(y,x,t,η,ξ)

)
.

(4.10)

Ainsi d’après l’hypothèse (ii) du théorème 3.1, on déduit que

dξF
(
0,0,0,η0,ξ0

)= dξpm(0,0,0,η0,ξ0,τ0
)
≠ 0. (4.11)

Il résulte du théorème d’Hamilton-Jacobi que l’équation

F
(
y,x,t,η,∇xΨ(y,x,t,η)

)= 0, ∇xΨ
(
0,0,0,η0

)= ξ0, (4.12)

admet une solution C∞, Ψ(y,x,t,η), (y,x,t) près de l’origine, η voisin de η0. On pose

ξ(y,x,t)= Ψ(y,x,t,η0
)
, τ(y,x,t)= q(y,x,t,η0,∇xξ(y,x,t)

)
. (4.13)
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On choisit δ0 > 0 tel que pour tout δ, 0< δ< δ0, on a (y,x,δ) voisin de l’origine. Ceci

achève la démonstration du lemme 4.1.

On prend

η= η0,

τ(y,x,δ)= q(y,x,δ,η0,∇xξ(y,x,δ)
)
,

ξ̃(y,x,δ)= ξ(y,x,δ)+ c·x
λ
,

(4.14)

où c est un vecteur constant de Rn−q qu’on fixera ultérieurement.

Lemme 4.2. Notons ζ0 = (η0,ξ0,τ0) et φ(y,x,t)= t, on a la relation

{
pm,

{
pm,φ

}}(
0,ζ0

)=−(pm)′′ττ

p′mt+

n−q∑
j=1

∂pm
∂ξj

∂τ
∂xj


(0,ζ0

)
. (4.15)

Preuve. Dans toute cette preuve on écrira p à la place de pm. On a

{p,φ} = p′τ ,
{
p,{p,φ}}= n−q∑

j=1

(
p′ξjp

′′
τxj −p′xjp′′τξj

)
+p′τp′′τt−p′tp′′ττ . (4.16)

D’après (4.5) on obtient pour tout 1≤ j ≤n−q

p′xj +
n−q∑
k=1

p′ξkξ
′′
xjxk+p′ττ′xj = 0, (4.17)

d’où

p′xj =−
n−q∑
k=1

p′ξkξ
′′
xjxk−p′ττ′xj ,

p′′τxj +
n−q∑
k=1

p′′τξkξ
′′
xjxk+p′′τττ′xj = 0,

(4.18)

d’où

p′′τxj =−
n−q∑
k=1

p′′τξkξ
′′
xjxk−p′′τττ′xj , (4.19)

par suite

{
p,{p,φ}}=− n−q∑

j,k=1

p′ξjp
′′
τξk
ξ′′xkxj −

n−q∑
j=1

p′ξjp
′′
τττ′xj

+
n−q∑
j,k=1

p′′τξjp
′
ξk
ξ′′xjxk+

n−q∑
j=1

p′′τξjp
′
ττ′xj +p′τp′′τt−p′tp′′ττ .

(4.20)

On en déduit que {p,{p,φ}}(0,ζ0)=−p′′ττ(
∑n−q
j=1 p

′
ξj
τ′xj +p′t)(0,ζ0).
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4.2. Choix de ϕ

Lemme 4.3. Il existe c dans Rn−q tel que

p′t
(
0,ζ0

)+n−q∑
j=1

(
τ′xj −cj

)
p′ξj

(
0,ζ0

)= 0 (4.21)

et il existe une fonction ϕ(y,x,δ,s) de classe C∞ dans V0×]0,δ0[×]−s0,s0[, où V0 est

un voisinage de (0,0) dans Rq−1×Rn−q tels que

pm
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+σ

−1/mnλνDsϕ
)
= 0, (4.22)

avec

Reϕ(y,x,δ,s)=α(y,x,δ)s+β(y,x,δ,s)s2, (4.23)

où α et β sont des fonctions de classe C∞ sur V0×]0,δ0[×]−s0,s0[,

α(0,0,0) < 0, β(0,0,0,0) < 0. (4.24)

Preuve. Dans cette preuve on écrira p à la place de pm. Posons

G(y,x,δ,s,z)= δ−θp
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+δ

θ/2z
)
. (4.25)

On a

∇xξ̃ =∇xξ+ cλ =∇xξ+cδ
θ. (4.26)

On voudrait trouver z0 ∈ C tel que

G
(
0,0,0,0,z0

)= 0, (4.27)

∂G
∂z
(
0,0,0,0,z0

)
≠ 0. (4.28)

Pour cela on pose X = (y,x,δ+sδθ,η,∇xξ+cδθ+sδθ∇xτ,τ) et on applique la for-

mule de Taylor à p au point X jusqu’à l’ordre 2 ; on obtient

G(y,x,δ,s,z)= δ−θp(X)+δ−θ/2zp′τ(X)+
z2

2
p′′ττ(X)+O

(
δθ/2

)
. (4.29)

Ensuite, on pose X1 = (y,x,δ,η,∇xξ,τ) et on applique de nouveau la formule de

Taylor au point X1 à l’ordre 1 on aura

G(y,x,δ,s,z)= δ−θp(X1
)+sp′t(X1

)+n−q∑
j=1

(
cj+sτ′xj

)
p′ξj

(
X1
)

+δ−θ/2zp′τ
(
X1
)+ z2

2
p′′ττ

(
X1
)+O(δθ/2).

(4.30)
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Or d’après (4.5), p(X1)= p′τ(X1)= 0, d’où

G(y,x,δ,s,z)= s

p′t(X1

)+n−q∑
j=1

τ′xjp
′
ξj

(
X1
)+n−q∑

j=1

cjp′ξj
(
X1
)+ z2

2
p′′ττ

(
X1
)+O(δθ/2).

(4.31)

Ainsi

G
(
0,0,0,0,z0

)= n−q∑
j=1

cjp′ξj
(
0,ζ0

)+ z2
0

2
p′′ττ

(
0,ζ0

)
. (4.32)

On pose

A=
n−q∑
j=1

cjp′ξj
(
0,ζ0

)
, B = p′t

(
0,ζ0

)+n−q∑
j=1

τ′xjp
′
ξj

(
0,ζ0

)
. (4.33)

Comme

dξp
(
0,ζ0

)
≠ 0, (4.34)

on peut donc trouver c ∈Rn−q tel que

A= B. (4.35)

On déduit de (4.27), (4.32) que z0 est donné par

z2
0 =−

2B
p′′ττ

(
0,ζ0

) . (4.36)

D’après le lemme 4.2 et l’hypothèse de non stricte pseudoconvexité de l’hypersurface

on a z2
0 < 0. Ainsi z0 est imaginaire pur. On choisit z0 tel que Imz0 > 0. Donc d’après

l’hypothèse (i) du théorème 3.1 on a

G
(
0,0,0,0,z0

)= 0,

∂G
∂z
(
0,0,0,0,z0

)= z0p′′ττ
(
0,ζ0

)
≠ 0,

(4.37)

d’après le théorème des fonctions implicites, il existe un voisinage V de (0,0,0,0)
dans Rq−1×Rn−q×R×R et une fonction

g : V �→ V(z0
)⊂ C, (y,x,δ,s) � �→ g(y,x,δ,s) (4.38)

vérifiant

g(0,0,0,0)= z0, (4.39)

G
(
y,x,δ,s,g(y,x,δ,s)

)= 0 dans V. (4.40)

On pose

Dsϕ(y,x,δ,s)= g(y,x,δ,s) (4.41)

avec

ϕ|s=0 = 0, (4.42)
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alors
∂2ϕ
∂s2

(y,x,δ,s)= i∂g
∂s
(y,x,δ,s). (4.43)

Par ailleurs, d’après (4.25), (4.39) et (4.41) on a

p
(
y,x,δ+δθs,η,∇xξ̃+δθs∇xτ,τ+δθ/2Dsϕ(y,x,δ,s)

)= 0, (4.44)

en dérivant cette expression par rapport à s on obtient

δθp′t+δθτ′x·p′ξ+
δθ/2

i
∂2ϕ
∂s2

p′τ = 0. (4.45)

D’où en prenant y = 0, x = 0, s = 0 et η= η0 on obtient

δθp′t
(
0,0,δ,η0,∇xξ̃,τ+δθ/2Dsϕ

)
+δθτ′x(0,0,δ)·p′ξ

(
0,0,δ,η0,ξ0,τ0+δθ/2Dsϕ

)
+ δ

θ/2

i
∂2ϕ
∂s2

(0,0,δ,0)p′τ
(
0,0,δ,η0,ξ0,τ0+δθ/2Dsϕ

)= 0.

(4.46)

Appliquons la formule de Taylor à p′t ,p
′
ξ et p′τ à l’ordre 1, au point

X = (0,0,δ,η0,∇xξ(0,0,δ),τ(0,0,δ)
)
, (4.47)

il en résulte que

δθp′t(X)+δθτ′x(0,0,δ)·p′ξ(X)+
δθ/2

i
∂2ϕ
∂s2

(0,0,δ,0)p′τ(X)

+ δ
θ

i

(
∂2ϕ
∂s2

Dsϕ
)
(0,0,δ,0)p′′ττ(X)+o

(
δθ
)= 0.

(4.48)

D’après le lemme 4.1, nous avons pour δ < δ0

p′τ
(
0,0,δ,η0,∇xξ(0,0,δ),τ(0,0,δ)

)= 0, (4.49)

d’où (4.48) devient

δθp′t(X)+δθτ′x(0,0,δ)·p′ξ(X)+
δθ

i

(
∂2ϕ
∂s2

Dsϕ
)
(0,0,δ,0)p′′ττ(X)+o

(
δθ
)= 0. (4.50)

On en déduit que

p′t(X)+τ′x(0,0,δ)·p′ξ(X)+
1
i

(
∂2ϕ
∂s2

Dsϕ
)
(0,0,δ,0)p′′ττ(X)+o(1)= 0. (4.51)

En faisant tendre δ vers zéro, on obtient

B+ 1
i
∂2ϕ
∂s2

z0p′′ττ
(
0,ζ0

)= 0, (4.52)
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donc

B+g′s(0,0,0,0)z0p′′ττ
(
0,ζ0

)= 0. (4.53)

Par ailleurs, nous avons z2
0 =−2B/P ′′ττ(0,ζ0), ceci donne

Bz0−2Bg′s(0)= 0, (4.54)

d’où g′s(0)= z0/2. Ainsi

Re
∂2ϕ
∂s2

(0)=− Img′s(0)=−
1
2

Imz0 < 0, (4.55)

par suite β(0,0,0,0) < 0 et

α(0,0,0)= Reig(0,0,0,0)= iz0 < 0. (4.56)

Corollaire 4.4. On a

pm
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+

λν
σ 1/mn

(
Dsϕ+ 1

ν
Ds
))

= 1
λν

[
H(y,x,δ,s)Ds+K(y,x,δ,s)+δrQ

(
y,x,δ,s,Ds

)]
,

(4.57)

où H, K et les coefficients de Q sont réguliers, H(0) ≠ 0, r > 0 et Q un opérateur

différentiel en Ds .

Preuve. Fixons σ 1/mn = λ3/2ν . Dans cette preuve on écrira p à la place de pm.

On a

p
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+

λν
σ 1/mn

(
Dsϕ+ 1

ν
Ds
))

=
∑

|α′ :m′|+|β:mn|+k/mn=1

aα′βkηα
′
(
∇xξ̃+ sλ∇xτ

)β

×
(
τ+δθ/2

(
Dsϕ+ 1

ν
Ds
))k

,

(4.58)

où α′ ∈Nq−1, m′ = (m1, . . . ,mq−1), β∈Nn−q−1 et k∈N.

Pour montrer qu’il existe r > 0 tel que

[
τ+δθ/2

(
Dsϕ+ 1

ν
Ds
)]k

= (τ+δθ/2Dsϕ)k+k(τ+δθ/2Dsϕ)kδθ/2Ds
−akτk−2δθ

ν
ϕ′′
ss+δr

δθ

ν
Rk
(
y,x,δ,s,Ds

)
,

(4.59)
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il suffit de raisonner par récurrence sur k. De (4.59) on déduit que

p
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+δ

θ/2
(
Dsϕ+ 1

ν
Ds
))

=
∑

|α′ :m′|+|β:mn|+k/mn=1

aα′βkηα
′
(
∇xξ̃+ sλ∇xτ

)β(
τ+δθ/2(Dsϕ))k

+
∑

|α′ :m′|+|β:mn|+k/mn=1

aα′βkηα
′
(
∇xξ̃+ sλ∇xτ

)β
k
(
τ+δθ/2Dsϕ

)k−1δθ/2

ν
Ds

−
∑

|α′ :m′|+|β:mn|+k/mn=1

aα′βkηα
′
(
∇xξ̃+ sλ∇xτ

)β
τk−2δθ

ν
ϕ′′
ss

+δr
∑

|α′ :m′|+|β:mn|+k/mn=1

δθ

ν
aα′βkηα

′
(
∇xξ̃+ sλ∇xτ

)β
Rk
(
y,x,δ,s,Ds

)
.

(4.60)

Or d’après le lemme 4.3 et ce qui précède on a

∑
|α′ :m′|+|β:mn|+k/mn=1

aα′βkηα
′
(
∇xξ̃+ sλ∇xτ

)β(
τ+δθ/2(Dsϕ))k

= p
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+δ

θ/2Dsϕ
)
= 0,

∑
|α′ :m′|+|β:mn|+k/mn=1

aα′βkηα
′
(
∇xξ̃+ sλ∇xτ

)β
k
(
τ+δθ/2Dsϕ

)k−1δθ/2

ν
Ds

= p′τ
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+δ

θ/2Dsϕ
)
δθ/2

ν
Ds,

−
∑

|α′ :m′|+|β:mn|+k/mn=1

aα′βkηα
′
(
∇xξ̃+ sλ∇xτ

)β
τk−2δθ

ν
ϕ′′
ss

= δ
θ

ν
K(y,x,δ,s),

δr
∑

|α′ :m′|+|β:mn|+k/mn=1

δθ

ν
aα′βkηα

′
(
∇xξ̃+ sλ∇xτ

)β
Rk
(
y,x,δ,s,Ds

)

= δr δ
θ

ν
Q
(
y,x,δ,s,Ds

)
.

(4.61)

Reprenons le terme
∑
|α′ :m′|+|β:mn|+k/mn=1aα′βkηα

′(∇xξ̃ + (s/λ)∇xτ)βk(τ +
δθ/2Dsϕ)k−1(δθ/2/ν)Ds et appliquons la formule de Taylor d’abord au point X =
(y,x,δ+s/λ,η,∇xξ̃+(s/λ)∇xτ,τ) à l’ordre 2, puis au point X1 = (y,x,δ,η,∇xξ,τ)
à l’ordre 1, nous obtenons

p′τ
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+δ

θ/2Dsϕ
)

= p′τ(X1)+δθ/2
(
Dsϕ

)
p′′ττ

(
X1
)+O(δθ). (4.62)
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Il en résulte qu’il existe r > 0 tel que

p
(
y,x,δ+ s

λ
,η,∇xξ̃+ sλ∇xτ,τ+δ

θ/2
(
Dsϕ+ 1

ν
Ds
))

= 1
λν

[
p′′ττ

(
y,x,δ,η,∇xξ,τ

)(
Dsϕ

)
Ds+K(y,x,δ,s)+δrQ

(
y,x,δ,Ds

)]
.

(4.63)

Nous avons par hypothèse (i) du théorème 3.1 que p′′ττ(0,0,0,ζ0)≠ 0. En posant

H(y,x,δ,s)= p′′ττ
(
y,x,δ,η,∇xξ,τ

)(
Dsϕ

)
, (4.64)

nous obtenons le résultat cherché.

4.3. Recollement des solutions asymptotiques. Les constructions précédentes

nous donnent une famille de fonctions uδ dépendant du paramètre δ > 0 qui pour t
près de δ vérifient Puδ = 0.

Dans la suite, on donne à δ la suite de valeurs δk = bk = k−ρ avec k∈N∗ et ρ > 0. On

note ν = νk = kε avec ε > 0 et σ = σk = (λ3/2
k νk)mn . On notera pour t ∈ [bk+1,bk−1],

t = δk+s/λk, la fonction

uk
(
y,x,δk+ s

λk

)
= ei(

∑q−1
j=1 σ

1/mj ηjyj+σ1/mn(ξ̃(y,x,δk)+(s/λk)τ(y,x,δk)))

×eνkϕ(y,x,δk,s)e−γ(y,x,δk)w(y,x,δk,s).
(4.65)

On a pour k assez grand et t ∈ [bk+1,bk−1]

|s| = λk
∣∣t−δk∣∣≤ λk∣∣δk−1−δk

∣∣
 ρkρ(θ−1)−1. (4.66)

Notons (c.1) la condition suivante :

(c.1) ρ(θ−1)−1< 0.

Si (c.1) est vérifiée, la fonction uk est bien définie.

L’opérateur P̃ défini par (4.4) s’écrit alors

P̃ = σPm
(
y,x,δ+ s

λ
,
(
ηj+σ 1/mn−1/mj

(
∇jξ̃+ sλ∇jτ

)
+ ν
i

1

σ 1/mj
∇jϕ

− 1
i

1

σ 1/mj
∇jγ+ 1

σ 1/mj
Dyj

)
j≤q−1

;∇xξ̃+ sλ∇xτ

+ ν
i

1
σ 1/mn

∇xϕ− 1
i

1
σ 1/mn

∇xγ+ 1
σ 1/mn

Dx,τ+ λν
σ 1/mn

(
Dsϕ+Ds

))

+σκ(···)+···

(4.67)

avec κ < 1.

On impose que la fonction γ et les paramètres λ, σ , δ vérifient les conditions sui-

vantes :

(c.2) σ−1/mj∇jγ bornée pour δ voisin de zéro,

(c.3) σ−1/mn∇xγ bornée pour δ voisin de zéro,

(c.4) λ−1σ 1/mn−1/mj bornée pour δ voisin de zéro.
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4.3.1. Choix de γ. On va déterminer la fonction γ(y,x,δ) de sorte qu’on puisse

“recoller” les fonctions uk. Pour cela on choisira les fonctions γ(y,x,δk) de sorte que

|uk| � |uk+1| près de δk ; |uk+1| � |uk| près de δk+1 et |uk| = |uk+1| en un point

proche du milieu de [δk,δk+1].
Pour obtenir ce résultat on a besoin du lemme suivant.

Lemme 4.5. Posons pour t ∈ [δk+1,δk−1]

Gk(y,x,t)= νkReϕ
(
y,x,δk,sk

)
−νk+1 Reϕ

(
y,x,δk+1,sk+1

)
, sj = λj

(
t−δj

)
.

(4.68)

Notons tk = δk/3+(2/3)δk+1 et Ik(y,x)=Gk(y,x,tk), alors

Ik(y,x)
−α(y,x,0)ρ
3
kρ(θ−1)+ε−1, quand k �→+∞. (4.69)

Preuve. On a sk = λk(t−δk). On pose lk = (1/3)(δk−δk+1). Alors lk 
 (ρ/3)k−ρ−1

pour k assez grand. Ainsi pour t = tk = δk−2lk = δk+1+ lk on a sk = λk(tk−δk) =
−2λklk et sk+1 = λk+1lk. On a donc

νkReϕ
(
y,x,δk,sk

)−νk+1 Reϕ
(
y,x,δk+1,sk+1

)
= kε[α(y,x,δk)sk+β(y,x,δk,sk)s2

k
]

−(k+1)ε
[
α
(
y,x,δk+1

)·sk+1+β
(
y,x,δk+1,sk+1

)·s2
k+1

]
= kε[α(y,x,δk)(−2kρθlk+β

(
y,x,δk,sk

)(
4k2ρθl2k

))]
−(k+1)ε

[
α
(
y,x,δk+1

)
(k+1)ρθlk+β

(
y,x,δk+1,sk+1

)
l2k(k+1)2ρθ

]
=−ρ

3

[
2α
(
y,x,δk

)
kε+ρθ−ρ−1+α(y,x,δk+1

)
(k+1)ε+ρθk−ρ−1]

+l2k
[
4βkk2ρθ+ε−βk+1(k+1)2ρθ+ε

]
.

(4.70)

Notons E1 = −(ρ/3)[2α(y,x,δk)kε+ρθ−ρ−1 + α(y,x,δk+1)(k + 1)ε+ρθk−ρ−1] et

E2 = l2k[4βkk2ρθ+ε−βk+1(k+1)2ρθ+ε].
On commence par calculer E1. On a pour k assez grand

α
(
y,x,δk

)=α(y,x,k−ρ)=α(y,x,0)+O(k−ρ), (4.71)

d’où

E1 = kε+ρθ−ρ−1
[
− 2ρ

3
α(y,x,0)+O(k−ρ)

− ρ
3
α(y,x,0)

(
1+ 1

k

)ε+ρθ
+O((k+1)−ρ

)]
,

(4.72)

par suite

E1 
−kε+ρθ−ρ−1ρα(y,x,0), (4.73)
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quand k tend vers l’infini. L’expression E2 s’écrit aussi sous la forme

E2 = l2k
[
4βkk2ρθ+ε−βk+1(k+1)2ρθ+ε

]
(4.74)

or on a

l2k 

ρ2

9
k−2ρ−2 (4.75)

quand k tend vers +∞ et

β
(
y,x,sk,δk

)= β(y,x,sk,k−ρ)= β(y,x,sk,0)+O(k−ρ). (4.76)

On a

sk = λk
(
tk−δk

)= δ−θk
[

1
3
δk+ 2

3
δk+1−δk

]

= 2
3
δ−θk

[
δk+1−δk

]=−2δ−θk lk 
−
2
3
ρkρθ−ρ−1, quand k �→+∞.

(4.77)

D’où, quand k tend vers l’infini on a

sk 
−2
3
ρkρθ−ρ−1, sk+1 
 1

3
ρkρθ−ρ−1. (4.78)

Ainsi on a

βk = β
(
y,x,sk,δk

)= β(y,x,0,0)+O(kρθ−ρ−1)+O(k−ρ). (4.79)

On en déduit que

E2 
 β(y,x,0,0)ρ
2

3
k2(ρ(θ−1)−1)+ε, (4.80)

quand k→+∞. Par suite on a

E1+E2 
−ρα(y,x,0)kε+ρ(θ−1)−1, quand k �→+∞. (4.81)

On obtient ainsi le résultat du lemme 4.5.

Démontrons maintenant le résultat énoncé au début du paragraphe 4.3.1. On pose

pour k0 assez grand

γk(y,x)=−
k−1∑
j=k0

Ij(y,x), (4.82)

on a (
γk+1−γk

)
(y,x)=−Ik(y,x). (4.83)

D’après (4.69), on a

Ik(y,x)
−α(y,x,0)ρkρ(θ−1)+ε−1
, (4.84)

le signe de l’expression ρ(θ−1)+ε−1 nous sera imposé ultérieurement par la condi-

tion (c.7). Ainsi on a

Ik(y,x)
−
∫ k+1

k
α(y,x,0)ρuε+ρθ−ρ−1du. (4.85)
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On peut donc écrire

γk(y,x)

∫ k
k0

α(y,x,0)ρuε+ρθ−ρ−1du, (4.86)

d’où

γk(y,x)
 ρkε+ρ(θ−1)

(ε+ρ(θ−1))
α(y,x,0)


 ρδ−(θ−1+ε/ρ)(
ε+ρ(θ−1)

)α(y,x,0).
(4.87)

Vérifions (c.2), (c.3) et (c.4). On a σ 1/mj = (λ3/2
k νk)mn/mj , d’où

σ = (k3/2ρθkε
)mn, σ 1/mj = (kε+(3/2)ρθ)mn/mj . (4.88)

Posons Γj =mn/mj > 1, alors

σ−1/mj∇yγk(y,x)
 ρ(
ε+ρ(θ−1)

)∇yα(y,x,0)δ−((θ−1+ε/ρ)−Γj((3/2)θ+ε/ρ)),

θ−1+ ε
ρ
−Γj

(
3
2
θ+ ε

ρ

)
= θ

(
1− 3Γj

2

)
+ ε
ρ
(
1−Γj

)−1< 0.
(4.89)

On a aussi

σ−1/mn∇xγ
(
y,x,δk

)
∇xα(y,x,0) ρ
ε+ρ(θ−1)

δ−((θ−1+ε/ρ)−(3/2)θ−ε/ρ)


∇xα(y,x,0) ρ
ε+ρ(θ−1)

δθ/2+1,

λ−1
k σ

1/mn−1/mj
k 
 kρθ(−(3/2)Γj+1/2)kε(1−Γj).

(4.90)

On remarque que le second membre de cette dernière équivalence tend vers 0 quand

k tend vers +∞. Ainsi les conditions (c.2), (c.3) et (c.4) sont vérifiées. On choisira θ et

ρ de telle sorte que la condition (c.1) est vérifiée.

4.3.2. Équation de transport et choix de w

Lemme 4.6. On a

1
σ
P̃ = 1

λν
[
H(y,x,δ,s)Ds+K(y,x,δ,s)+δr̃ Q̃

(
y,x,δ,s,Dy,Dx,Ds

)]
, (4.91)

où H, K et les coefficients de Q̃ sont réguliers, H(0,0,0,0) ≠ 0, r̃ > 0, à condition que

l’on ait

(c.5) ε[1−mn(1−κ)] < ρθ[3mn(1−κ)/2−1] pour tout κ, 0≤ κ ≤ 1−1/mn et

(c.6) ε < ρθ/2 ; ε < ρ(1−θ/2).
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Preuve. Nous avons

σ−1P̃ = Pm
(
y,x,δ+ s

λ
,
(
ηj+σ 1/mn−1/mj

(
∇jξ̃+ sλ∇jτ

)
+ ν
i

1

σ 1/mj
∇jϕ

− 1
i

1

σ 1/mj
∇jγ+ 1

σ 1/mj
Dyj

)
j≤q−1

;∇xξ̃+ sλ∇xτ

+ ν
i

1
σ 1/mn

∇xϕ− 1
i

1
σ 1/mn

∇xγ+ 1
σ 1/mn

Dx,τ+ λν
σ 1/mn

(
Dsϕ+Ds

))

+σκ−1(···)+···
(4.92)

avec κ < 1. En utilisant un développement de Taylor de Pm à l’ordre 1 au point X =
(y,x,δ+s/λ,η,∇xξ̃+(s/λ)∇xτ,τ+(λν/σ 1/mn)(Dsϕ+Ds)), on remarque d’après le

corollaire 4.4 que σ−1P̃ s’écrit sous la forme (4.91) si les conditions suivantes sont

satisfaites :

(i) σκ−1 = o(1/λν),
(ii) δ−dσ−1/mn = o(1/λν), δ−dσ−1/mj = o(1/λν) avec d= θ−1+ε/ρ,

(iii) νσ−1/mn = o(1/λν), νσ−1/mj = o(1/λν).
La condition (i) est vraie d’après (c.5), ainsi les termes deσ−1P̃ provenant des termes

d’ordre inférieurs de P sont inclus dans δr̃ Q̃. La condition (ii) est vraie d’après la

deuxième partie de (c.6). La condition (iii) est vraie d’après la première partie de (c.6).

Déterminons la suite de fonctions wj(y,x,δ,s), j ≥ 0, par

(
HDs+K

)
w0 = 0, w0(y,x,δ,0)= 1,(

HDs+K
)
wj =−Q̃wj−1, wj(y,x,δ,0)= 0, j ≥ 1.

(4.93)

Ainsi la solution formelle w̃ =∑j≥0wjδjr̃ sera alors la solution de

(
HDs+K+δr̃ Q̃

)
w̃ = 0. (4.94)

On prend une fonction de (y,x,δ,s,z), Z(y,x,δ,s,z), C∞ près de (0,0,0,0), telle

que

Z ∼
∑
j≥0

wjzj, (4.95)

quand z tend vers 0, au sens suivant :

∀k∈N, ∀α∈N n−q, ∀β∈N q−1, ∀N ∈N, ∃ ckαβN ≥ 0, (4.96)

tel que pour (y,x,δ,s,z) près de l’origine on a

∣∣∣∣∣∣Dks DαxDβy

Z− N∑

j=0

wjzj


∣∣∣∣∣∣≤ ckαβN|z|N+1. (4.97)

Si on prend w(y,x,δ,s) = Z(y,x,δ,s,δr̃ ), on obtient (HDs +K +δr̃ Q̃)w = o(δ∞).
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Lemme 4.7. Pour tout t ∈ [δk+1,δk−1] ; (y,x) ∈ V où V est un voisinage de (0,0),
soit

uk(y,x,t)= ei
∑q−1
j=1 σ

1/mj ηjyj+σ1/mn(ξ̃(y,x,δk)+(t−δk)τ(y,x,δk))

×eνkϕ(y,x,δk,s)e−γ(y,x,δk)w(y,x,δk,s)
(4.98)

avec s = λk(t−δk) et soit fk = Puk/uk. Alors il existe k0 > 0 tel qu’on a

∀(β,α,l)∈Nq−1×Nn−q×N, ∀N ∈N, N assez grand, ∃cαβlN > 0; ∃ ΓN > 0

tels que
∣∣DβyDαxDltfk(y,x,t)∣∣≤ cαβlNk−ΓN (4.99)

pour tout k, k≥ k0 et (y,x,t)∈ V ×[δk+1,δk−1].

Preuve. On a Puk/uk = P̃wk/wk = (σ/λν)(1/wk)[(HDs+K+δr̃ Q̃)wk]. Or

wk =
N−1∑
j=0

(
δr̃
)jwj

(
y,x,s,δk

)+(δr̃ )NRN(y,x,s,δk) (4.100)

avec RN fonction de classe C∞ et bornée dans un voisinage de zéro. D’où

fk = σ
λν

1
wk


N−1∑
j=0

(
δr̃k
)j(HDs+K)wj

+(δr̃k)N(HDs+K)RN+
N−1∑
j=0

(
δr̃k
)jQ̃wj+

(
δr̃k
)N+1Q̃RN




= σ
λν

1
wk

[(
HDs+K)w0+

(
δr̃k
)N
Q̃wN−1+

(
δr̃
)N(HDs+Kδr̃ Q̃)RN]

=
(
k3ρθ/2+ε)mn

kρθ+ε
1
wk
k−ρr̃N

[
Q̃wN−1+

(
HDs+K+δr̃ Q̃

)
RN
]

= kρθ((3/2)mn−1)+ε(mn−1)ρr̃N 1
wk

[
Q̃wN−1+

(
HDs+K+δr̃ Q̃

)
RN
]

= kρ[−r̃N+θ((3/2)mn−1)]+ε(mn−1) 1
wk

[
Q̃wN−1+

(
HDs+K+δr̃ Q̃

)
RN
]

= k−ρ[r̃N−θ((3/2)mn−1)]+ε(mn−1) 1
wk

[
Q̃wN−1+

(
HDs+K+δr̃ Q̃

)
RN
]
.

(4.101)

On en déduit que |fk| ≤ CNk−ΓN . On procède de même pour les dérivées de fk.

4.3.3. Étude de l’ensemble où |uk| = |uk+1|. Pour (y,x,t)∈ V×[δk+1,δk−1], V est

un voisinage de (0,0)⊂Rq−1×Rn−q posons

Fk(y,x,t)= log
∣∣∣∣ uk
uk+1

∣∣∣∣. (4.102)

Lemme 4.8. Il existe des constantes c et η strictement positives telles qu’on ait

∂Fk
∂t

≥ ckη (4.103)

avec
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(c.7) ε+ρ(θ−1)−1> 0, η= 2ρθ−ρ+ε−1.

Preuve. On a

∂Fk
∂t

=
[
λkνk

∂Reϕ
∂s

(
y,x,sk,δk

)−λk+1νk+1
∂Reϕ
∂s

(
y,x,sk+1,δk+1

)]

+
[
λk
w′
s
(
y,x,sk,δk

)
w
(
y,x,sk,δk

) −λk+1
w′
s
(
y,x,sk+1,δk+1

)
w
(
y,x,sk+1,δk+1

)
]
,

(4.104)

On note E3 = [λk(w′
s(y,x,sk,δk)/w(y,x,sk,δk)) − λk+1(w′

s(y,x,sk+1,δk+1)/
w(y,x,sk+1,δk+1))].

on écrira

∂Fk
∂t

=
[
λkνk

∂Reϕ
∂s

(
y,x,sk,δk

)−λk+1νk+1
∂Reϕ
∂s

(
y,x,sk+1,δk+1

)]+E3. (4.105)

D’après (4.25) on a

Reϕ(y,x,s,δ)=α(y,x,δ)s+β(y,x,δ,s)s2, (4.106)

donc

∂Reϕ
∂s

=α(y,x,δ)+2β(y,x,δ,s)s+β′s(y,x,δ,s)s2

=α(y,x,δ)+s(2β(y,x,δ,s)+β′s(y,x,δ,s)s)
=α(y,x,δ)+β1(y,x,δ,s)s,

(4.107)

où β1(y,x,δ,s)= 2β(y,x,δ,s)+β′s(y,x,δ,s)s, avec β1(0,0,0,0) < 0. On a

∂Fk
∂t
= [(λkνk−λk+1νk+1

)
α
(
y,x,δk

)]
+[λk+1νk+1

(
α
(
y,x,δk

)−α(y,x,δk+1
))]

+
[
−β1

(
y,x,δk+1,sk+1

)(t−δk+1
)

δ2θ
k+1

νk+1+β1
(
y,x,δk,sk

)(t−δk)
δ2θ
k

νk

]
+E3

= [(λkνk−λk+1νk+1
)
α
(
y,x,δk

)]+[λk+1νk+1
(
α
(
y,x,δk

)−α(y,x,δk+1
))]

+
[
−β1

(
y,x,δk+1,sk+1

)((t−δk+1
)

δ2θ
k+1

)
νk+1+β1

(
y,x,δk,sk

)((t−δk)
δ2θ
k

)
νk

]
+E3.

(4.108)

Notons E4 = [(λkνk − λk+1νk+1)α(y,x,δk)], E5 = [λk+1νk+1(α(y,x,δk) − α(y,
x,δk+1))] et E6 = [−β1(y,x,δk+1,sk+1)((t − δk+1)/δ2θ

k+1)νk+1 + β1(y,x,δk,sk)
((t−δk)/δ2θ

k )νk].
Évaluons E4, nous avons

∣∣E4

∣∣≤ c0

∣∣λk−λk+1

∣∣≤ c1kρθ+ε−1, avec c0 > 0, c1 > 0. (4.109)

La fonction α(y,x,δ) étant de classe C∞ par rapport à (y,x,δr ) avec r > 0, alors il

existe des constantes c′ > 0 et c′′ > 0 telles que

∣∣α(y,x,δk)−α(y,x,δk+1
)∣∣≤ c′(δrk−δrk+1

)≤ c′′k−ρr−1. (4.110)
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On en déduit qu’ il existe une constante c2 > 0 telle que |E5| ≤ c2kρθ+ε−ρr−1. Esti-

mons E6,

E6 =−β1
(
y,x,δk+1,sk+1

)

×
[(
t−δk+1

δ2θ
k+1

− t−δk
δ2θ
k+1

)
νk+1+

(
t−δk

)(νk+1

δ2θ
k+1

− νk
δ2θ
k

)]

− νk
δ2θ
k

(
t−δk

)[
β1
(
y,x,sk+1,δk+1

)−β1
(
y,x,sk,δk

)]
,

=−β1
(
y,x,sk+1,δk+1

)[δk−δk+1

δ2θ
k+1

νk+1

]

−β1
(
y,x,sk+1,δk+1

)[νk+1

δ2θ
k+1

− νk
δ2θ
k

](
t−δk

)

− νk
δ2θ
k

(
t−δk

)[
β1
(
y,x,sk+1,δk+1

)−β1
(
y,x,sk,δk

)]
.

(4.111)

Pour k assez grand on a (δk−δk+1)/δ2θ
k+1 
 ρk2θ−ρ−1 et νk+1 
 kε. Commeβ1(0,0,0,0)<

0 il existe donc une constante c̃0 > 0 telle que

−β1
(
y,x,sk+1,δk+1

)[δk−δk+1

δ2θ
k+1

νk+1

]
=−β1

(
y,x,sk+1,δk+1

)[δk−δk+1

δ2θ
k+1

νk+1

]

≥ c̃0k2ρθ−ρ−1+ε.
(4.112)

On a νk/δ2θ
k 
 k2ρθ+ε, d’où on a νk+1/δ2θ

k+1−νk/δ2θ
k 
 (2ρθ+ε)k2ρθ+ε−1. Comme t ∈

[δk+1,δk−1], on a |t−δk| ≤ cteρk−ρ−1. On en déduit qu’il existe une constante c̃1 > 0

telle que

∣∣∣∣∣−β1
(
y,x,sk+1,δk+1

)[νk+1

δ2θ
k+1

− νk
δ2θ
k

](
t−δk

)∣∣∣∣∣
=
∣∣∣∣∣(t−δk)β1

(
y,x,sk+1,δk+1

)[νk+1

δ2θ
k+1

− νk
δ2θ
k

]∣∣∣∣∣
≤ c̃1k2ρθ+ε−2−ρ.

(4.113)

On a

− νk
δ2θ
k

(
t−δk

)[
β1
(
y,x,sk+1,δk+1

)−β1
(
y,x,sk,δk

)]

= νk
δ2θ
k

(
t−δk

)[
β1
(
y,x,sk+1,δk+1

)−β1
(
y,x,sk,δk

)]
= o(k2ρθ−ρ−1+ε).

(4.114)

Ainsi on déduit qu’il existe une constante c2 > 0 telle que E6 ≥ c3k2ρθ−ρ−1+ε On voit

facilement qu’il existe une constante c4 > 0 telle que |E3| ≤ c4kρθ . On a donc obtenu
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les inégalités suivantes :

∣∣E4

∣∣≤ c0

∣∣λk−λk+1

∣∣≤ c1kρθ+ε−1, avec c0 > 0, c1 > 0,∣∣E5

∣∣≤ c2kρθ+ε−ρr−1, avec c2 > 0,

E6 ≥ c3k2ρθ−ρ−1+ε, avec c3 > 0,∣∣E3

∣∣≤ c4kρθ, avec c4 > 0.

(4.115)

On a

ρθ+ε−1≤ 2ρθ−ρ−1+ε (car θ > 1 et ρ > 0),

ρθ+ε−ρr −1≤ 2ρθ−ρ−1+ε (car r > 0, ρ > 0 et θ > 1),

ρθ < 2ρθ−ρ−1+ε⇐⇒ ρ(θ−1)−1+ε > 0 (d’ après (c.7)).
(4.116)

On en déduit qu’il existe une constante c > 0 telle que pour k assez grand

∂Fk
∂t
(y,x,t)≥ ckη, avec η= 2ρθ−ρ−1+ε (4.117)

d’où le lemme 4.8.

Estimons maintenant la fonction Fk. D’après les expressions (4.68), (4.98) et (4.102)

on peut écrire

Fk(y,x,t)= γ
(
y,x,δk+1

)−γ(y,x,δk)+Gk(y,x,t)
+ log

(∣∣∣∣∣ w
(
y,x,δk,λk

(
t−δk

))
w
(
y,x,δk+1,λk+1

(
t−δk+1

))
∣∣∣∣∣
)
.

(4.118)

En utilisant (4.87) et en prenant t = tk = (1/3)δk+(2/3)δk+1, on obtient

Fk
(
y,x,tk

)= γ(y,x,δk+1
)−γ(y,x,δk)+Ik(y,x)

+ log

(∣∣∣∣∣ w
(
y,x,δk,λk

(
tk−δk

))
w
(
y,x,δk+1,λk+1

(
tk−δk+1

))
∣∣∣∣∣
)

= log

(∣∣∣∣∣ w
(
y,x,δk,λk

(
tk−δk

))
w
(
y,x,δk+1,λk+1

(
tk−δk+1

))
∣∣∣∣∣
)

=O(1).

(4.119)

Ainsi Fk(y,x,tk) est bornée indépendemment de k. Pour que kηlk tende vers +∞
quand k tend vers +∞ il faut que

(c.8) 2ρθ+ε−2(ρ+1) > 0.

D’après (4.103), on a Fk(y,x,t) s’annule en un point d’un intervalle contenant tk.
D’après le théorème des fonctions implicites, il existe une fonction tk(y,x) de classe

C∞ sur un voisinage V0 de (0,0) à valeurs dans un intervalle ouvert de [δk+1,δk],
telle que Fk(y,x,tk(y,x))=0. Par ailleurs, on vérifie que tk(y,x)=tk+ek(y,x), avec

ek(y,x)=O(k−η).
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Les étapes suivantes étant standard, les démonstrations sont les mêmes que dans

[1, 3]. On ne mentionnera que les étapes, laissant le lecteur se rapporter à [3] pour les

détails.

4.3.4. Modification des uk. On va modifier légèrement les fonctions uk de manière

à pouvoir bien définir la perturbation a.

On construit une suite de fonctions, yk(y,x,s), nulles sur les surfaces t = tk(y,x)
et t = tk−1(y,x), plus petites que toute puissance de 1/k pour t ∈ [δk+1,δk−1], telles

que, en notant

vk(y,x,t)=uk(y,x,t)
(
1+yk(y,x,s)

)
, (4.120)

on a

(1) F̃k = log(|vk/vk+1|) satisfait (4.103) et s’annule pour t = tk(y,x),
(2) gk = Pvk/vk satisfait (4.99),

(3) gk est plate sur {(y,x,t) : t = tk(y,x)} et {(y,x,t) : t = tk−1(y,x)}.
Cette construction utilise uniquement le lemme 4.7 et le fait que les surfaces t = cte
sont non caractéristiques pour P .

4.4. Dernière étape. On choisit χ une fonction de classe C∞ sur R à support com-

pact telle que

χ(s)= 1 pour |s| ≤ 3
4
, suppχ ⊂ [−1,1], 0≤ χ ≤ 1. (4.121)

On pose χk(t)= χ((t−δk)/3lk) et u(y,x,t)=∑k≥k0
χk(t)vk(y,x,t), k0 est un entier

assez grand. On vérifie alors que a = −Pu/u est une fonction de classe C∞ sur un

voisinage de zéro, plate sur t = 0.

Il reste à vérifier que u est plate sur t = 0. Or, ce résultat découle du fait que

d’après l’expression (4.87), la fonction γk(y,x) est O(kρ(θ−1)+ε) et |νkReϕ(y,x,t)| ≤
Ckρ(θ−1)+ε−1.

4.5. Compatibilité des conditions (c.1), . . . , (c.8) et choix effectif des paramètres.

Par hypothèse nous avons θ > 1, ε > 0, ρ > 0 et K ≤ (1−1/mn). Les conditions sont

(c.1) ρ(θ−1)−1< 0,

(c.5) ε[1−mn(1−K)] < ρθ[3mn(1−K)/2−1],
(c.6) ε < ρθ/2 et ε < ρ(1−θ/2),
(c.7) ε+ρ(θ−1)−1> 0,

(c.8) 2ρθ+ε−2(ρ+1) > 0,

fixons θ = 9/8, ε = 3/4 et choisissons ρ = 6. Ainsi les conditions (c.1), (c.2), (c.3), (c.4),

(c.5), (c.6), (c.7) et (c.8) sont vérifiées. Ceci achève la démonstration du théorème 3.1.
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