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NON-UNICITE DU PROBLEME DE CAUCHY
POUR DES OPERATEURS DIFFERENTIELS
QUASI-HOMOGENES

KHALGUI-OUNAIES HELLA

Recu le 19 juin 2000

Nous démontrons que si P est un opérateur différentiel quasi-homogeéne d’ordre m sur
une partie ouverte Q de R", a coefficients de classe C®, tel que la m-partie principale est
a coefficients réels ; et que xg € Q, S = {x € Q: p(x) = Pp(x0)} est une hypersurface non
caractéristique en x et strictement non pseudoconvexe avec {{pm, P}, P} (x0,En) + 0 et
dqpm(x0,8&0) # 0, alors P n’a pas I'unicité de Cauchy par rapport a S.

Classification 2000 des Sujets Mathématiques: 35A07.

1. Introduction. Soit Q) une partie ouverte de R" et S une hypersurface de Q, pas-
sant par un point xg, définie par

S={xeQ:¢p(x)—P(xo) =0}, (1.1)

ou ¢ est une fonction réelle de classe C*® vérifiant d¢ (xg) + O.

DEFINITION 1.1. Soit P un opérateur différentiel défini sur Q, on dit que P n’a
pas l'unicité de Cauchy par rapport a S s’il existe un voisinage V de xo dans Q, des
fonctions a et u # 0, de classe C* sur V tel que suppa C {x € Q: ¢p(x) < Pp(x0)},

Vasuppu = {x € Q:¢p(x) <p(x0)}nV,

(1.2)
Pu+au=0 dansV.
Alinhac [1] a donné des résultats de non-unicité pour des opérateurs du type
p(x,t,098,07) = 0" pm (X, 6,5, T) + 0™ *pm i (x, 1,5, T) +- - -, (1.3)

oux eR"L teR, g=1.

Dans ce papier, nous donnons des conditions suffisantes de non-unicité du pro-
bléme de Cauchy pour des opérateurs différentiels quasi-homogenes, réels, a
coefficients de classe C.

Les techniques utilisées dans ce travail sont rattachées aux constructions de I'op-
tique géométrique qui sont développées dans les travaux de Plis [4], Hormander [2] et
Alinhac [1].
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2. Notation et définitions. Soit Q une partie ouverte de R" et soit (x,&) € T*(Q),
X =(X1,..,Xn).
Soit m = (myq,...,my) un multi-indice tel que

O<mp<---<myg 1 <Myg=---=My, (2.1)

et x = (xq,...,0) € N,
On note

loc:m| = cymyt+ocomyt +- - -+ oxym;t,

1 0
D¥=Dj'---D& avecD; =~

0 0 0 ) (2.2)
i 0x; '

, v =<00——
4 0x4 dxn
DEFINITION 2.1. Ondit que P est un opérateur différentiel quasi-homogene d’ordre
m sur Q si
P(x,D)= > a(x)D™ (2.3)

[oem|<1

La m-partie principale de P est 'opérateur

Pm(x,D)= > ax(x)D% (2.4)

locm|=1

DEFINITION 2.2. Soient f et g deux fonctions de classe C® sur T*Q. On désigne
par {f,g} le crochet de Poisson quasi-homogene de f, g défini par

_ N~ (9f 09 of og
{f’g}‘%(agjaxj axjagj)' (2.5)

DEFINITION 2.3. Soit xo € Q et ¢ une fonction de classe C® dans Q telle que
Vap(xo) = 0. Lhypersurface S = {x € Q: ¢p(x) = ¢p(xp)} est dite strictement non
pseudoconvexe au sens quasi-homogéne par rapport aux bicaractéristiques de P
issues de xj, si elle est non caractéristique et vérifie la condition suivante :

3% € R" = {0} : pim (x0,&0) = Hp,, P (x0,80) =0,  Hp, $(x0,&) <0, (2.6)
avec Hy,, b = {pm, P} et H2 b = {pm, (Pm, P}

3. Fnoncé du théoréme

THEOREME 3.1. Soit P un opérateur différentiel quasi-homogéne d’ordre m, a
coefficients de classe C® sur une partie ouverte Q) de R", tel que la m-partie princi-
pale est a coefficients réels. Soit xy € Q et

S={xeQ:p(x)=¢p(x0)} (3.1)

une hypersurface non caractéristique en x et strictement non pseudoconvexe au sens
quasi-homogeéne par rapport aux bicaractéristiques de P issues de x,. Pour &y verifiant
(2.6), on suppose que

@ Hpm, P}, P} (x0,80) #0;
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(i) dgpm(x0,80) # 0 ot dgpm = (0,...,0,dg, Pm;---,dg, Pm)-
Alors il existe un voisinage W de x et deux fonctions a et u = 0, de classe C* sur W,
s’annulant dans

{[xeW:p(x)>p(xo)} (3.2)

et vérifiant

Pu+au=0, X0 € SUPP U. (3.3)

EXEMPLE 3.2. Soit P 'opérateur différentiel quasi-homogeéne défini sur R>, d’ordre
m=(1,2,4,4,4), de symbole

p(y1,¥2,%x1,X2,t,01,02,&1,E2,T)

4
=TT A+ DE+E]+ A+ [A+D)N3 - EE+t3n1 ]+ x1E5. (3-4)

Pour xp = (0,0,0) € RZXR?xR, S = {(y,x,t) e R>:t =0} et & = (2,1,1,1,0), Popé-
rateur P vérifie les hypothéses du théoréeme 3.1, il en résulte que P n’a pas l'unicité
de Cauchy par rapport a S.

4. Preuve du théoréme 3.1. Toutes les hypotheses étant invariantes par change-
ment de coordonnées respectant les coordonnées quasi-homogenes, on peut donc se
ramener aux variables (v, x,t) € R4~ x R""4x R, dans un voisinage V de x( = (0,0,0),
avec

S={(y,x,t) eV:t =0}, P=P(y,x,t,Dy,Dx,Dy). 4.1)

Onpose s =A(t—35) avecA =698 >0 et 0 > 1. L'opérateur P s’écrit alors dans les
coordonnees (y,x,s),

P(3,x,t,Dy,Dx,D;) = P(y,x,5+ %,Dy,Dx,ADS). (4.2)

Prenons la solution u sous la forme

u<y .54 5) ST 0y o U E (x84 (/)T (7,%,0))
A (4.3)
xe¥ P X08) o=y (X0 (y, x,5,5).
On définit un opérateur P par Pu/u = Pw/w avec
P(y’xaaaS,Dy,DXaDS)
_ S 1/mj 1/mn € 1/mn S v 1
=P(y,x,0+—,|O nj+o M+ g =V, t+-Vip--V;y+D,, ,
A A 1 2 J 1<j<q-1

= 1 1
crl/m"VxE+0'1/m”%VXT+KiVX(p—?VXy+DX,0'”’”"1'+—i7\vcp; +2\DS>,
(4.4)

ou V, désigne le vecteur gradient par rapport a la variable x et V; désigne la dérivée
par rapport a la variable y;.
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4.1. Choix de n, E, T

LEMME 4.1. Soit p,, le m-symbole principal de P ; Cy = (no, o, To) satisfaisant les
hypothéses du théoréme 3.1. Alors on peut trouver un voisinage de I'origine dans R1-1 x
R"-4 x R, des fonctions n(v,x,t) = (N1,N2,...,0q-1) (¥, x,t), E(»,x,t) = (£1,&,...,
Ea-1) (v, x,0), T(y,x,t) et 5o > O tels que pour tout 0 < 6 < 8 et (,x) preés de l'origine
dans R~ xR"4 on a

0
pm(y!xlain!vxgl-r) = %(y;x,&rlnvxg,'r) =0;

(4.5)
(n(0),VxE&(0),7(0)) = Co.
PREUVE. On prend pour tout (v,x,t), n(y,x,t) = no c’est-a-dire n; = no;.
D’apres les hypotheéses (2.6) et le (i) du théoréme 3.1, on a
0Pm _ 0°pm
a_r (OlCO) - 0’ aTZ (Olgo) * 01 (46)

il résulte d’apres le théoréme des fonctions implicites qu’il existe une fonction g de
classe C®,

q: V(Olr’()lgo) - V(TO) C IR! (J’,x:t:”la‘é) — Q(J’,xst,nyg), (47)

vérifiant
Q(OanOago) = To, aap%(yvxat!niglq(yvxatansg)) =0. (4.8)

On note
F(yvxyt!nyg) :pm(y!x!trnlEsQ(ysxvtrn!E))! (49)

on a alors F(0,0,0,n0,&0) = pm(0,0,0,n0,&0,To) =0 et pour tout 1 < j <n-gq,

or

_9Pm
o, (v,x,t,n,8) = 3%, (v, x,t,n,8,a(y,x,t,n,8))

(4.10)
L 9a

oPm
ag] (y,xyty'?:f)ai_r(ysxytyﬂ:f;‘l(y,xvtyrlsf))-

Ainsi d’apres I'hypothese (ii) du théoreme 3.1, on déduit que
dgF(0,0,0,n0,80) = dgpm (0,0,0,n0,&0,To) # 0. (4.11)
Il résulte du théoréme d’Hamilton-Jacobi que I'équation
F(y,x,t,n,Vx¥(y,x,t,n)) =0,  Vx¥(0,0,0,n0) = &o, (4.12)

admet une solution C*, ¥(y,x,t,n), (y,x,t) pres de I'origine, n voisin de ny. On pose

E(y,x,t) =¥ (y,x,t,n0), T, x,t) =q(y,x,t,n0,VxE(y,x,1)). (4.13)
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On choisit §¢ > 0 tel que pour tout 6,0 < § < dp, on a (y,x,d) voisin de I'origine. Ceci

acheve la démonstration du lemme 4.1.

On prend

n = no,
T(y,X,(S) = q(y,X,(S,rIO, ng(y,xﬁ)),

g(y’xa(s) = g(le,é)'i_ %1

ou ¢ est un vecteur constant de R" 4 qu’on fixera ultérieurement.

LEMME 4.2. Notons Cy = (no, o, To) et p(v,x,t) =t, on a la relation

(P, (P, $1(0.80) = ()’ (Pmt+ S m 2T ) 0,%0).

PREUVE. Dans toute cette preuve on écrira p a la place de p,;,. On a

o1

pdt=pp  (p.ip.d}) Z (Pt iy, = P Pe, ) + PEPY —PiP

D’apres (4.5) on obtient pour tout 1 < j<n-gq

n-q
’ ’ n ’ ’
Px; + kz:l pEkEXij + PrTx; = 0,

d’ou
n-q
4 ’ rr 4 4
pxj = Z pgkngxk _pTij’
k=1
rr 44 rr rr ’
pij + Z p'rgkngxk + pTTTXj = 01
k=1
d’ou
rr 44 rr ’
pij = Z pTEkEXij _pTTTXJ'l
par suite

{Py{lﬂad’}} == kz:lpgjp-rgkgxkx, z ngprr X,
J

+ Z pTEjPEkEXij + Z pTEjpTTXA,' +PrPrt —PiPrr-
Jok=1 j=1

On en déduit que {p, {p,$}}(0,L0) = —p- (XjY pg, i, +P1) (0, 5o).

a

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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4.2. Choix de @

LEMME 4.3. Il existe ¢ dans R""4 tel que

pi(0,%0) + _Z 1)pg, (0.%0) = (@.21)

et il existe une fonction @ (v,x,0,s) de classe C* dans Vyx]0,0¢[x]— so,So[, ou Vy est
un voisinage de (0,0) dans R1-1 x R4 tels que

Pm (y x,80+ A,n VXE+ VXT T+o VM AyD, (p) 0, (4.22)

avec

Rep(y,x,5,s) = x(v,x,8)s +B(y,x,5,5)s>, (4.23)

ou « et B sont des fonctions de classe C* sur Vyx]0,80[x]— 50, S0l,
«(0,0,0) <0, B(0,0,0,0) < 0. (4.24)

PREUVE. Dans cette preuve on écrira p a la place de p,,. Posons

G(y,x,8,5,z) =6~ p(y x,0+ A,n ViErs T VAT T+6%°z ) (4.25)
On a
vxézvxg+§ =V E+cdP. (4.26)
On voudrait trouver z, € C tel que
G(0,0,0,0,z0) =0, (4.27)
ZG (0,0,0,0,z0) # 0. (4.28)

Pour cela on pose X = (y,x,0 +56%,n,V<E+cd? +56°V,T,T) et on applique la for-
mule de Taylor a p au point X jusqu’a 'ordre 2 ; on obtient

G(y,x,6,5,2) =8 p(X)+6~ G/ZZpT(X)+—pTT(X)+O(59/2). (4.29)

Ensuite, on pose X; = (v,x,6,n,Vx&,T) et on applique de nouveau la formule de
Taylor au point X; a I'ordre 1 on aura

G(,x,6,5,2) =5 %p(X1) +sp;(X1) + z(cﬁsr,;j)ngj(xl)
Jj=1 (4.30)

+672zpl (Xy) + 717,# (X1)+0(872).
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Or d’apreés (4.5), p(X1) = p5-(X1) =0, d’ou

n—-q n-q 2
! 4 ’ ! Z rr
G(¥,x,6,5,2) =s[pt(X1) + ijpgi(Xl):| + 2 ¢ipg, (X1) + S pi(X1) + 0(6°7%).
i1 ‘

j=1
(4.31)
Ainsi
= z .
G(0,0,0,0,z0) = > ¢ipg, (0,50) + ?pw(o,z_:o). (4.32)
Jj=1 ‘
On pose
n-q n-q
A=Y ¢ip (0,50),  B=pi(0,50)+ 3 i pg, (0,50)- 4.33)
j=1 j=1
Comme
dgp(0,5o) * 0, (4.34)
on peut donc trouver ¢ € R" 1 tel que
A=B. (4.35)
On déduit de (4.27), (4.32) que z( est donné par
2B
Z5 = ——r———. (4.36)
0 p7(0,%o)

D’apres le lemme 4.2 et 'hypothése de non stricte pseudoconvexité de I’hypersurface
ona z(z) < 0. Ainsi z¢ est imaginaire pur. On choisit z, tel que Imzy > 0. Donc d’apres
I’hypotheése (i) du théoreme 3.1 on a

G(0,0,0,0,z9) =0,
oG . (4.37)
E (0,0,0,0,Zo) = ZOPTT(O’ CO) + 0,
d’aprés le théoréme des fonctions implicites, il existe un voisinage V de (0,0,0,0)
dans R7"! x R"4x R xR et une fonction

g:V —V(zp) CC, (v,x,0,s) — g(¥,x,6,s) (4.38)
vérifiant
g(0,0,0,0) = zo, (4.39)
G(y,x,6,8,9(v,x,6,5)) =0 dans V. (4.40)
On pose
Dsp(y,x,6,5) =9(¥,x,6,5) (4.41)
avec

@s=0 =0, (4.42)
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alors
2

4
= (v,x,6,5) = 1—(y x,8,5).

Par ailleurs, d’apres (4.25), (4.39) et (4.41) on a

p(v,x,8+8%,n,ViE+ 85V, T+62Ds@(v,x,8,5)) =0

en dérivant cette expression par rapport a s on obtient

69/2 az

69p;+69T,’(-p§+—l 55 pT—O

D’ou en prenant y =0, x =0, s =0 et n = Ny on obtient

8°p;(0,0,8,n0, V€, T+8°%D, @)
+8%74.(0,0,8)-p5(0,0,8,n0, %0, To + %> Ds )

50/2 62

+T—(006O)pT(OOIST)Q,Eo,To-i—(SQ/ZD (P) 0.

Appliquons la formule de Taylor a p;, pé et p, alordre 1, au point

X =1(0,0,6,no,

il en résulte que

591 (X) +6°7(0,0,8) - (X)

59
(5

32

V&(0,0,6),7(0,0,6)),

69/2 a2

+T—(o,o,5,0)p;(x)

0s2

A Dsqo)(O 0,5,0)p" (X) +0(8%) =

D’apres le lemme 4.1, nous avons pour 6 < dg

p"r(olo!aanlv

d’ou (4.48) devient

pi(X)+68%71,(0,0,6)- Pe(X)+ — o (

On en déduit que

p;(X) +14(0,0,0)- pg(X)+

X

£(0,0,6),7(0,0,6)) =0

2
9 (stcp>(0 0,8,0)py.(X) +0(8%) = 0.

0s2

(aa ‘fDSq))(o 0,8,0)p7. (X) +0(1) = 0.

En faisant tendre & vers zéro, on obtient

1
B+~

2

0@
i 0s2

Zop‘,r,'r (Oy CO) =

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)
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donc

B+g.(0,0,0,0)z0p", (0,Co) = 0. (4.53)

Par ailleurs, nous avons z(z) = —2B/P;.(0,Cyp), ceci donne

Bzp—2Bg;(0) =0, (4.54)
d’ou g;(0) = zp/2. Ainsi
Reaz—qg(O) =—-Img;(0) = —llmzo <0, (4.55)
052 § 2
par suite (0,0,0,0) <0 et
«(0,0,0) =Reig(0,0,0,0) =iz < 0. (4.56)
O

COROLLAIRE 4.4. Ona

Av 1
pm(y,x,6+]\ n, VX§+ VXT T+—— s yr (Dscp+ DS)>
4.57)
= %[H(y,x,é,s)Ds+K(y,x,6,s)+6VQ(y,x,6,s,DS)],

ou H, K et les coefficients de Q sont réguliers, H(0) + 0, v > 0 et Q un opérateur
differentiel en D;.

PREUVE. Fixons o!/™n = A3/2y_Dans cette preuve on écrira p a la place de py,.
On a

p(yx5+ N, Vx§+ Vx'r T+ i\/m <D3q9+ DS)>
B

_ 5 Guppn® (VxE+39:) (4.58)

|/ :m' | +|Bmy | +k/my=1

k
X <T+69/2 (Dsq>+ %DS» ,

ou & €Nl m’ = (my,...,mg_1), BEN" 4 et k e N.
Pour montrer qu’il existe > 0 tel que

k
[T +692 (Ds(p + lDS)] = (1+6°2D,@)" + k(T + 592D ) 892D,
v (4.59)

—apt* 28 <PSS+5’6—Rk(yx55Ds)
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il suffit de raisonner par récurrence sur k. De (4.59) on déduit que

p(y,X,(S"r%,r],ng"'%VXT|T+60/2(DSCP+%DS)>
NG ) g 0/2 k
— Z A kN (VXE"F va.l_) (T+5 (Ds(p))
lo:m/ |+ Bmn | +k/mp=1
. S B k-1 5912
+ > A prn™ (Vx§+XVxT) k(T+8°2Ds@)" =D
[o/:m/ |+|B:mp | +k/mp =1 v
B 0
, - s 0%
- Z Aw kN (Vx§+ vaT) LA
lo/:m/ |+|Bmp | +k/mp =1 v
5f , = s b
+0" Z _aa’Bkna (VX§+XV)<T) Rk(y,X,(S,S,Ds)-
[o:m/ |+|Bimp | +k/mpu=1
(4.60)

Or d’apres le lemme 4.3 et ce qui précede on a

B
, ~ S .
A prn® (Vx§+ XWT) (T+8%2 (D))"

[o |+ Bmp | +k/myu=1

= v(y,x,6+ %,n,vx& %VXT,TMQ/ZDSQD) =0,

, .5 B ko1 0972
Ao k™ <VX§+—VXT> k(t+8%2Ds@)" " ——Dj
IS _ A v
[o:m/ |+ Bmy | +k/mpu=1
~ 0/2
:p;(y!xs6+§7n1v3€§+%vxT!T-"_(se/ZDS(p)(sTDSJ
(4.61)
o ., S 4 k-2 59 "
- Z A pkN <VX§+XVXT> T — Qs
! . v
o m/ [+]|Bmp |+k/mn=1

0

1)
= 7K(y,x,6,s),

5 , . s B
8" > 7010(/,3;(;7"‘ (VXE+XVXT) Rx(v,x,8,5,Dy)

[ :m |+ Bimp | +k/mp=1

750
= 6 7Q(y1x!615|DS)'

Reprenons le terme X |w.m (s gmnlsk/mno1 A kN (VxE + (s/A)VT)PR(T +
892D @)*k-1(892/v)Ds et appliquons la formule de Taylor d’abord au point X =
(yv,x,0+s/A,n, ng+ (s/A)VT,T) al'ordre 2, puis au point X; = (v, x,6,n,VyE,T)
al’ordre 1, nous obtenons

pfr(.yvxa(s'i' %:n,vxg‘F %VxT,T"F(Se/ZDS(p)
= pr (X)) +692(Ds@) il (X1) +0(89).

(4.62)
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Il en résulte qu'il existe » > 0 tel que

v(y,x,6+ i,n,vx‘& %VxT,T+59/2 (Dscp+ lm))
%
1 (4.63)
= E[p',rl'r(y!xv51r,!vxgvT)(DS(p)DS +K(_’)’,X,5,S) +5YQ(J/,X,5,DS)].

Nous avons par hypotheése (i) du théoreme 3.1 que p7,(0,0,0,Zp) # 0. En posant
H(y,x,6,5) = p{r (2, %,8,n,V+E,7) (Ds @), (4.64)

nous obtenons le résultat cherché. |

4.3. Recollement des solutions asymptotiques. Les constructions précédentes
nous donnent une famille de fonctions us dépendant du parametre 6 > 0 qui pour ¢t
pres de ¢ vérifient Pus = 0.

Dans la suite, on donne a ¢ la suite de valeurs 6y = by = k™ aveck € N* et p > 0.On
notev=vy=kfavece>0eto =0y = ()\i/zvk)mn. On notera pour t € [bys1,br-11,
t =0 +5/A, la fonction

m (y,x,ék + i) S M M M G 500+ (5 MO T80
Ak (4.65)
X ek P Y X:0ks) o=y (Y X0k (7, x, 5, 8).
On a pour k assez grand et t € [by41,br-1]
Is| = A |t =0 | < Ax|Oko1 — O | = pkPO-D-1, (4.66)
Notons (c.1) la condition suivante :
(c.l) p(6—1)—-1<0.
Si (c.1) est vérifiée, la fonction u, est bien définie.
L’opérateur P défini par (4.4) s’écrit alors
~ Ky _ ) = S v 1
P=o0Py (y,x,6+ X (nj 4 g l/mn=1/m; <Vj§+ XWT) + T olm; Vip
1 1 1 = S
T gl VYT Dyf)jsq_l PVaE T VaT (4.67)
v 1 1 1 1 Av
T o VXP T i VY iy Do T4 iy, (Ds® +DS))
+O-K(...)+...
avec kK < 1.

On impose que la fonction y et les parametres A, o, § vérifient les conditions sui-
vantes :
(c.2) o~ Y/™iVv .y bornée pour § voisin de zéro,
j
(c.3) o~Vmny y bornée pour § voisin de zéro,
(c.4) A~tgl/mn —1/m; bornée pour § voisin de zéro.



240 KHALGUI-OUNAIES HELLA

4.3.1. Choix de y. On va déterminer la fonction y(y,x,d) de sorte qu’on puisse
“recoller” les fonctions uy. Pour cela on choisira les fonctions y(y,x,dx) de sorte que
[ukl > |ugs1l pres de 6k ; [ur1l > lug| prés de Sg+1 et [ugl = [ugs1l en un point
proche du milieu de [Sy, Ox+1].

Pour obtenir ce résultat on a besoin du lemme suivant.

LEMME 4.5. Posons pourt € [0k+1,0k-1]

Gr(y,x,t) = viRe @ (y,x, 0k, 5k)

(4.68)
— Vi1 Re@ (¥, X, 0k+1,8k+1), S5 =A;(t—5;).
Notons ty = 6k /3+(2/3)0k+1 et Ix(y,x) = Gk (v, x,t), alors
L(y,x) ~ —a(y,x,O)ngW*l)*f*l, quand k — +co. (4.69)

PREUVE. Ona sy =Ag(t—35k). Onpose ly = (1/3)(0x —0Ok41). Alors Iy = (p/3)k=P~1
pour k assez grand. Ainsi pour t = ty = 6x — 2lx = Ox+1 + Ik on a s = Ag(tx — o) =
—2Akly et sg11 = Ags1lk. On a donc

viRe @ (¥, %,0k,5k) — Vi1 Re @ (y, X, 811, Sk+1)
= k[ (7, x,81) Sk + B(3, X, 6k, 5) 57 ]
—(k+ D[ (v, %, 8k+1) - Ske1 + B(V, X, k1, Sk+1) *Sp41 ]
= ke[ (3, %, 0k) (= 2kPOLic + B(v, x, Bk, sk) (4k%013)) ] 4.70)
— (k+ 1) [a(y,x, k1) (k+ 1)L+ B(y, x, Sks1, k1) L (k+1)%9]

= —%[20<(y,x,6k)k”"0"”1 + (Y, %, 0x41) (k+ 1)k 1]

+ L [4Bik?P0%E — By (k+1)2007].

Notons Ei = —(p/3)[2(y,x, 80k P07071 + a(y, X, 0k41) (k + DFHPOk=P1] et
Ey = [ [4Bik?00€ — Bor (k+1)200<].
On commence par calculer E;. On a pour k assez grand

«(y,x,0k) = (v, x,k?) = x(y,x,0) + O (k™) (4.71)
d’ou
E, = ks+p07071[_ Z?po((y,x,O) +0(k™")
p 1\ 00 (4.72)
—§o<(y,x,0)(1+E) +O((k+1)*9)],
par suite

E1 = kP97 1 p(y,x,0), (4.73)
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quand k tend vers I'infini. L’expression E» s’écrit aussi sous la forme

Ep = [ [4Brk® %% — Broa (k+1)%00+] (4.74)

or on a
pz
1 =~ 31620*2 (4.75)

quand k tend vers +oo et
B(v,x,sk,6k) = B(y, %, 56, k") = B(,x,5,0) + O (k™7). (4.76)

On a

1 2
Sk =Ax(ty —6k) = 5;9[§5k+ §6k+1 —6k:|

5 ? 4.77)
= 55;9[6;(“ 6] =-28. 1 ~ —§pkp9“"1, quand k — +oo.
D’ou, quand k tend vers l'infini on a
2 0-p-1 1 0-p-1
Sk = —gpk" P Skel = §pk” P, (4.78)
Ainsi on a
B = B(¥,x,5,6k) = B(3,x,0,0) + O (kPP~1) + O (k7). (4.79)
On en déduit que
2
Ep = B(y,x,0,0)%k””“’*”*””, (4.80)
quand k — +oo. Par suite on a
E1+E>»~—pa(y,x,0)kePO-D=1" quand k — +oo. (4.81)
On obtient ainsi le résultat du lemme 4.5. O

Démontrons maintenant le résultat énoncé au début du paragraphe 4.3.1. On pose
pour kg assez grand

k-1
Ye(v,x) == > I;i(y,x), (4.82)
Jj=ko
on a
(Vks1 = yi) (¥, x) = Ik (7, ). (4.83)
D’apres (4.69), on a
L(y,x) = —x(y,x,0)pk” """ (4.84)

le signe de I'expression p(6 —1) + € — 1 nous sera imposé ultérieurement par la condi-
tion (c.7). Ainsi on a

k+1
I (y,x) =~ —J x(y,x,0)pusPo=r-lgy. (4.85)
k
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On peut donc écrire
k
Yr(y,x) =J x(y,x,0)puttPo0=r-lgy, (4.86)
ko
d’ou
pks+p(9—1)
X))~ ————x(y,x,0
Yi(y,x) E1p@-1) (v,x,0)
(4.87)
p57(971+£/p> ( 0)
~ ——x(y,x,0).
(e+po—1) Y
Vérifions (c.2), (c.3) et (c.4). Ona o'/™i = (/\i/zvk)m"/mf, d’ou
o = (K320kE)Mn glimy = (et GI2p0)ma (4.88)
Posons I'; = my,/m; > 1, alors
~1/m; O —((0-1+€/p)-Tj((3/2)0+¢/p))
o IV yr(y,x) = ($+p(971))vy0‘(yvxso)6 I ;
& 3 £ 31 £ (4.89)
6—1+E—Fj<50+5) =0< —7)+E(1—Fj)—1 <0.
On a aussi
~1/mp - p —((0-1+¢/p)—(3/2)6—¢/p)
o ny(y,x,(Sk)_an(y,x,0)8+p(9_1)6
(4.90)

~ P cop2+
= an(y,X,0)8+p(9_1)5

1 _l/mp-1/m; _ , T

Aklo—k M=ty e p0(=(3/2)T5+1/2) pe(1-T;)
On remarque que le second membre de cette derniére équivalence tend vers 0 quand
k tend vers +o0. Ainsi les conditions (c.2), (c.3) et (c.4) sont vérifiées. On choisira 0 et
p de telle sorte que la condition (c.1) est vérifiée.

4.3.2. Equation de transport et choix de w

LEMME 4.6. Ona
(4.91)

P = %[H(y,x,é,s)DS +K(y,x,8,5) +8"Q(y,x,8,5,Dy,Dx,Ds)],

|~

ou H, K et les coefficients de Q sont réguliers, H(0,0,0,0) = 0, ¥ > 0, d condition que

l'on ait
(c.5) e[1-my(1-kK)] < pO[3m,(1—k)/2—1] pour toutk, 0 <k <1-1/m, et

(c.6) e<pl/2;e<p(1-0/2).
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PREUVE. Nous avons

15 N - . c S v
(o2 1P=Pm<y,x,5+)\,(r]j+0‘1/m” 1/mJ(VJ§+XVJT>+?WvJ¢

1 1 1 = S
_fgl/mjvijral/mJ’Dyf>jsq,1’vX§+vaT
v 1 1 \4
T ot VAP e VY i Do T (D3q9+D3)>

+ oK 1()+
(4.92)

avec k < 1. En utilisant un développement de Taylor de P, a I'ordre 1 au point X =
(7,%,8+5/A,0, V<& + (s/A) VT, T+ (Av/ol/mn) (Ds@ + D)), on remarque d’apreés le
corollaire 4.4 que o~1P s’écrit sous la forme (4.91) si les conditions suivantes sont
satisfaites :

(i) o1 =0(1/av),

() 6~4o~Vmn =o(1/Av), 5 4o Y™ =0(1/Av) avecd =0—-1+¢/p,

(iii) vo=l/mn =o(1/Av), va ™ =o(1/Av).

La condition (i) est vraie d’aprés (c.5), ainsi les termes de o~ P provenant des termes
d’ordre inférieurs de P sont inclus dans 6”Q. La condition (ii) est vraie d’apreés la
deuxiéme partie de (c.6). La condition (iii) est vraie d’aprés la premiere partie de (c.6).

Déterminons la suite de fonctions w;(y,x,6,s), j =0, par

(HDs +K)wg =0, wo(y,x,6,0) =1,

- . (4.93)
(HD;+K)wj =-Qwj_1, w;(¥,x,6,00=0, j=1.
Ainsi la solution formelle 1 = ¥ ;.o w ;" sera alors la solution de
(HD; +K +687Q)w = 0. (4.94)

On prend une fonction de (y,x,96,s,z), Z(v,x,6,s,z), C* pres de (0,0,0,0), telle
que

Z~> w;zl, (4.95)
Jj=0

quand z tend vers 0, au sens suivant :

VkeN, VaeN" 1 VBeNT YNeEN, I crapn =0, (4.96)

tel que pour (y,x,9,s,z) prés de I'origine on a

< CrapnlzIV L (4.97)

N
D¥D2Dk (z -y w,-zf)
j=0

Si on prend w(y,x,d,s) = Z(y,x,8,5,67), on obtient (HD; +K + 6" Q)w = 0(5%).



244 KHALGUI-OUNAIES HELLA

LEMME 4.7. Pour toutt € [0k+1,0k-1] ; (¥,x) € V ou V est un voisinage de (0,0),
soit

ur(y,x,t) _ o S 0 Myt E (x50 + (51T (x,5k)

(4.98)
X eVkP I X018) oY X0y (7, x, i, 5)

avec s = A (t —Oy) et soit fr = Puy/ug. Alors il existe kg > 0 tel qu’on a

YV (B, 1) € NI"IxN" 4 xN, VN €N, N assez grand, deapin > 0; 3Ty >0
(4.99)
tels que | DYDED! fi(v,x,t)| < capivk™

pour tout k, k > kg et (y,x,t) € VX[Ok+1,0k-11-
PREUVE. On a Puy/uy = Pwi/wi = (0/AV) (1/wi)[(HDs +K +67Q)wy]. Or

wr= > (8" wj(y,x,5,6¢) + (6") Ry (v,x,5,6¢) (4.100)
i=0

avec Ry fonction de classe C® et bornée dans un voisinage de zéro. D’ou

N-1 o ) i
+ (80 (HDs +K)Ry + Y. (87)! Qu;+ (6£)N“QRN]
Jj=0
o 1
T Avw
(k3p6/2+5)mn 1 . . s (4.101)
= W wikkiprN[Qwal + (HDS +K+ 6YQ)RN]

s +K)wo Ywy-1+(8")N (HDs + K" Q) Ry
[(HD K) +(5V) Quy-1+(87)" (HDs +K5"Q)Ry |

kp9 (3/2)ymy—1)+e(mu— l)prN [QwN 1+(HDS+K+5TQ) ]

_kp[ TN+0((3/2)mu—1)]+e(mp—-1) _— [QwN 1+(HDS+K+6VQ) ]
Wi

= k~PIPN=0(B3/2)mu—-1)]+e(mn—1) = [QWN 1+(HDS+K+57Q) N
Wy

On en déduit que | fx| < Cyk™™. On procéde de méme pour les dérivées de fx. O

4.3.3. Ftude de I'ensemble ott |uy| = |ur1|. Pour (y,x,t) € VX[Oks1,0k-11, V est
un voisinage de (0,0) ¢ R2~! x R"*~4 posons

u
Fr(y,x,t) =log ’ k. ‘ (4.102)
Uk+1
LEMME 4.8. Il existe des constantes c et n strictement positives telles qu’on ait

- =ck" (4.103)

avec
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(c.7) e+p(6-1)-1>0,n=2p0—p+e—1.
PREUVE. On a
0Fc

ot ["kvk

JRe@
s

JRe
(7,%,5K,0k) = Aks1Vis1 T(p (y,X,Sk+1,5k+1)]
(4.104)

0

[A Wi, x50k w (y:X,5k+1,5k+1)]

+ k - +1 ]
w(y,x, Sk, 0k) w (Y, X, Sk+1,0k+1)

On note E3 = [A(wi(y,x,sk,0k)/w(y,X,SK,0k) — Axe1 (Wi (), X, Sk1,0k41)/

w(y:x,5k+1=5k+1))]-
on écrira

oF oR oR
a—tk=[?\kvk ai(p(y,x»fkyék)_Ak+1Vk+1%(J’;X;Skﬂ;akﬂ)]+ES- (4.105)

D’apres (4.25) on a
Rep(y,x,s,8) = x(v,x,8)s +B(y,x,5,5)s?, (4.106)

donc

ORe@
os

=x(y,x,0) +2B(¥,x,5,8)s + Be(¥,x,5,5)s°

=a(y,x,0) +s(2B(¥v,x,8,5) + B (y,x,5,5)s) (4.107)
=o0(y,x,0)+B1(y,x,0,s)s,

ou B1(y,x,68,s) = 2B(y,x,8,s) + B.(v,x,5,s)s, avec B1(0,0,0,0) <0.On a
o,
ot
= [(AkVik = Aks1 Vi) (v, x, 6k) |
+ [Ake1 Vi (ax (v, x, k) — (7, X, 0k41)) ]

3 o«
+ —Bl(y,x,ékﬂ,skﬂ)%
6k+1

= [(Arvi = Aks1Vier1) & (3, X, 60) | + [Ak s Viern (e (3, X, 6) — (v, X, 0k41)) ]

t—0
Vi1 +Bl(y,X,5k,Sk)(6Tk)Vk] +E3
k

+ Bl(y,X,5k+1,Sk+1)(

(t - 6k+1)
il

)Vk+1 +B1(y,x,0k, Sk) ( (tgzgk) )Vk} +E;.
k
(4.108)

Notons E4 = [(Axvik — Ags1Vis1) (Y, X,0k)], Es = [Aprivie (a(y,x,6k) — x(,
x,6k:1))] et Es = [=B1(3,X,0ke1,Ske1) ((E = 8ke1) /835 Virr + B1(Y,X, 5k, 5)
((t =81 /53wl

Evaluons E4, nous avons

|Es| <co|Ar—Ari1| < c1k??+€71, avec ¢y >0, ¢; > 0. (4.109)

La fonction x(y,x,d) étant de classe C* par rapport a (y,x,5") avec r > 0, alors il
existe des constantes ¢’ > 0 et ¢”” > 0 telles que

[ox(v,x,0k) —x(v,x,0k41) | <’ (8, —84,,) <c"k P71 (4.110)
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On en déduit qu’ il existe une constante c» > 0 telle que |E5| < ¢ kP?+€-Pr-1 Esti-
mons Eg,

EG = _Bl (yyX!6k+1lSk+l)
t— 6k+1 t— 5)() Vik+1 Vi
X Vi 1+(t6k)( ):|
|:( 5k+1 6k+1 ' 5k+1 612<9
(= 81) [B1 (7, X, Ske1, Oka1) — Br (7, %, 51, 8k) ],

Ok — Ok+1 } (4.111)
—0 Ykl

5k+1

629

=-B (y,x,5k+1,5k+1)[

—B1(¥, X, Sk+1,0k41) [ka vzkg} (t—6%)
6k+1 o

629 o (t = 8k) [ B (7, %, Sks1, 8ks1) — B (7, X, Sk, 5k) |

Pour k assez grand ona (5x— (Skﬂ)/(‘i,ﬁ1 pk20-P~Letyy 1 =~ kf. Comme B1(0,0,0,0) <
0 il existe donc une constante ¢y > 0 telle que

Or—0 Ox—0
—B1 (>, X, Sk+1,0k+1) |:k29k+lvk+l:| = —B1(¥, X, Sk+1,0k+1) |ik26k+lvk+l:|
6k+1 5k+1
> C~0k2p97p71+£_
(4.112)

On a vy /530 ~ k2P0+ d’ott on a vis1/829, — i/ 820 =~ (2p0 + €)k?P0+e-1. Comme t €
[Sk+1,0k-1],0na |t —30k| < ctepk=P~1. On en déduit qu’il existe une constante & > 0
telle que

‘_El(yixysk+116k+1)|::;k+l 620:|(t 6’()
k+1
4113
<t—5k>31<y,x,sk+1,am>[;"“ ;’;” @19
k+1 k
< 61k2p9+s—2—p_
On a
529(t Sk)[B1 (v, x, k1, 0k+1) — B1 (¥, X, Sk, k) ]
= 6_k9(t Ox) [B1(y, %, Sks1,6k41) — B1 (3, X, Sk, k) ] (4.114)

k
k2p97p71+s)

Ainsi on déduit qu'il existe une constante ¢, > 0 telle que Eg > c3k?*?-P~1+¢ On voit
facilement qu'il existe une constante c4 > 0 telle que |E3| < c4k??. On a donc obtenu
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les inégalités suivantes :

|Es| <co|Ar—Ari1| < c1k?9+€71, avec ¢y >0, ¢ > 0,

|Es| < cokPO+€=PT=1 " avec ¢ > 0,

(4.115)
Eg > c3k?P0-P=1%&  avec ¢3 > 0,
|E3| <cy4k??,  avec cq > 0.
On a
pO+e—-1<2p0—-p—-1+c (car@>1etp>0),
pO+e—pr—1=<2p0—p—-1+¢ (carr>0,p>0etd>1), (4.116)
pO<2p0—-p—-1l+e=p(@-1)—1+>0 (d apres(c.7)).
On en déduit qu’il existe une constante ¢ > 0O telle que pour k assez grand
0F,
g(y,x,t)zck", avecn=2p0—-p—-1+¢ (4.117)
d’ou le lemme 4.8. O

Estimons maintenant la fonction Fy. D’apres les expressions (4.68), (4.98) et (4.102)
on peut écrire

Fr(y,x,t) = y(v,x,0k:1) =y (3, %,0k) + Gk (¥, X, 1)

w (Y, x,6k, Ak (t —6k)) D (4.118)
1 -
! Og(‘w(y!x16k+lsAk+l(t_6k+l))

En utilisant (4.87) et en prenant t = tx = (1/3)0x +(2/3)dk+1, on obtient

Fi(y,x,t) = y(¥,x,6k41) =y (¥, x,6k) + I (¥, %)
w(.yvxiék,Ak(tk—(Sk)) ‘)
1
’ Og(‘ w(y!X16k+la/\k+1(tk*(Sk.,_l))
—log<‘ w (%, 8k, Ak (tk = O1)) D
w (Y, X, 0k+1,Aks1(tk — k1))
=0(1).

(4.119)

Ainsi Fi(y,x,ty) est bornée indépendemment de k. Pour que k"l; tende vers +oo
quand k tend vers +oo il faut que
(c.8) 2p0+¢&—-2(p+1)>0.

D’apres (4.103), on a Fx(y,x,t) s’annule en un point d'un intervalle contenant ty.
D’apres le théoreme des fonctions implicites, il existe une fonction tx(y,x) de classe
C® sur un voisinage Vy de (0,0) a valeurs dans un intervalle ouvert de [k+1,0k],
telle que Fy(y,x,tx(y,x))=0. Par ailleurs, on vérifie que ty(y,x) =ty +ex(y,x), avec
er(y,x)=0(k™").
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Les étapes suivantes étant standard, les démonstrations sont les mémes que dans
[1, 3]. On ne mentionnera que les étapes, laissant le lecteur se rapporter a [3] pour les
détails.

4.3.4. Modification des 1. On va modifier légérement les fonctions 1, de maniere
a pouvoir bien définir la perturbation a.

On construit une suite de fonctions, vk (v, x,s), nulles sur les surfaces t = ty(y,x)
ett =ty-1(y,x), plus petites que toute puissance de 1/k pour t € [Ox1,0k-1], telles
que, en notant

Ve (v, x,t) = up (v, x,t) (1 + e (v, x,5)), (4.120)

on a
(1) Fy =log(|uk/vis1|) satisfait (4.103) et s’annule pour t = tx (v, x),
(2) gk = Pvy/vg satisfait (4.99),
(3) gk est plate sur {(y,x,t): t =tx(y,x)} et {(y,x,t):t =tg1(¥,x)}.
Cette construction utilise uniquement le lemme 4.7 et le fait que les surfaces t = c*¢
sont non caractéristiques pour P.

4.4. Derniere étape. On choisit x une fonction de classe C* sur R a support com-
pact telle que

x(s)=1 pour \sls%, suppx c [-1,1], O0=<x<1. (4.121)

On pose xi(t) = x((t —0x)/3lx) et u(y,x,t) = Zkzko Xk (D) vr(y,x,t), ko est un entier
assez grand. On vérifie alors que a = —Pu/u est une fonction de classe C* sur un
voisinage de zéro, plate sur t = 0.

Il reste a vérifier que u est plate sur t = 0. Or, ce résultat découle du fait que
d’aprés I'expression (4.87), la fonction yy (y,x) est O (kP0-D+€) et |[vgRe @ (y,x,1)| <
Ckp(9—1)+5—1_

4.5. Compatibilité des conditions (c.1),...,(c.8) et choix effectif des parametres.
Par hypothese nous avons 6 > 1, >0, p >0et K < (1—-1/m,,). Les conditions sont

(c.1) p(6—-1)-1<0,

(c.5) €[1-m,(1-K)] <pO[3m,(1-K)/2-1],

(c.6) e<plB/2ete<p(1-0/2),

(c.7) e+p(6-1)—1>0,

(c.8) 2p0+¢&—-2(p+1) >0,
fixons 60 = 9/8, € = 3/4 et choisissons p = 6. Ainsi les conditions (c.1), (c.2), (c.3), (c.4),
(c.5), (c.6), (c.7) et (c.8) sont vérifiées. Ceci acheve la démonstration du théoréme 3.1.
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