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The controllability of semilinear stochastic delay evolution equations is studied by using
a stochastic version of the well-known Banach fixed point theorem and semigroup theory.
An application to stochastic partial differential equations is given.
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1. Introduction. The fixed point technique is widely used as a tool to study the
controllability of nonlinear systems in finite- and infinite-dimensional Banach spaces,
see the early survey paper by Balachandran and Dauer [5]. Also, Anichini [2] and Ya-
mamoto [14] studied the controllability of the classical nonlinear system by means
of Schaefer’s theorem and Schauder’s theorem, respectively. Several authors have ex-
tended the finite-dimensional controllability results to infinite-dimensional controlla-
bility results represented by evolution equations with bounded and unbounded opera-
tors in Banach spaces (e.g., see Balachandran et al. [4] and Dauer and Balasubramaniam
[7D).

The semigroup theory gives a unified treatment of a wide class of stochastic para-
bolic, hyperbolic, and functional differential equations. Much effort has been devoted
to the study of the controllability of such evolution equations (Rabah and Karrakchou
[11]). Controllability of nonlinear stochastic systems has been a well-known problem
and frequently discussed in the literature (e.g., Astrom [3], Wonham [13], and Zabczyk
[15]). The stochastic control theory is a stochastic generalization of the classical con-
trol theory. The purpose of this paper is to consider the controllability of semilinear
stochastic delay systems represented by evolution equations with unbounded linear
operators in Hilbert spaces. The Banach fixed point theorem (see [1]) is employed to
obtain the suitable controllability conditions.

The system considered in this paper is an abstract formulation of the stochastic
partial differential equation discussed by Liu [8]. For an example, a stochastic model
for drug distribution was described in [12]. This model is a closed biological system
with a simplified heart, a one organ or capillary bed, and recirculation of the blood
with a constant rate of flow, where the heart is considered as a mixing chamber of
constant volume. The drug concentration in the plasma in given areas of the system
are assumed to be a random function of time. It is further assumed that for ¢t > 0,
x1(s,t;w) is the concentration in moles per unit volume at points (represented by s)
in the capillary at time t with w € Q, the supporting set of a complete probability
measure space (Q,A,P) with A being the o-algebra and P the probability measure.
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The heart is considered as a mixing chamber of constant volume given by

Ve

Vv, (1.1)
where V, is the residual volume of the heart and V, is the injection volume. It is
assumed that an initial injection is given at the entrance of the heart resulting in a
concentration x(t), 0 <t < T, of drug in plasma entering the heart, where T is the
duration of injection. Let the time required for the blood to flow from the heart exit
to the entrance of the organ be T > 0, and also let T be the time required for blood to
flow from the exit of the organ to the heart entrance. Then, the drug concentration in
the plasma leaving the heart x(-;w) satisfies the integral equation (see [6])

T
x(t;w)=G(t)+J0 K(s,x(s;w);w)ds, 0<t<T, (1.2)
where

T(t)
G(t) :J gx(s)ds, T(t)={t,forO<t<T,and T, fort=>T},
oV (1.3)

K(s,x(s;w);w) = fg[X(s;w)fxl(l,sz;w)],

and x1(L,s;w) = 0if s < 0. Here, C is the constant volume flow rate of plasma in the
capillary bed and x (1, s; w) is the concentration of drug in plasma leaving the organ
at time s. The mild solutions of such integral equations are of the form in stochastic
integral equations.

Stochastic delay equations serve as an abstract formulation of many partial differ-
ential equations that arise in problems of heat flow in material with memory, visco-
elasticity, and many other physical phenomena (for details, see [8, 12] and the refer-
ences therein). The main objective of this paper is to derive controllability conditions
for semilinear stochastic delay evolution equations in Hilbert spaces.

2. Preliminaries. Consider the semilinear stochastic delay evolution equation

d;;(tt) +AX(t) = (Bu) () + f(t,x(t),x(t—T(1)))
+g(t,x(t),x(t—r(t)))dﬁit)’ teJ=1[0,T], =1

where T > 0 and A is a linear operator (in general unbounded), defined on a given
Hilbert space X with an infinitesimal generator of an analytic semigroup S(t), t = 0.
The state x (-) takes its values in the Hilbert space X, and the control function u(-) is
in L?(J,U), the Hilbert space of admissible control functions with U a Hilbert space.
B is a bounded linear operator from U into X.

Let K be a separable Hilbert space, and let (Q,3,3;,P) be a complete probability
space furnished with a complete family of right continuous increasing sigma algebras
{9} satisfying 3; ¢ J for t > 0. The process {w(t), t > 0} is a K-valued, J;-adapted
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Brownian motion with P{w (0) = 0} = 1, and /(-) is an X-valued Jy-measurable ran-
dom variable independent of the Brownian motion w(-).

For any Banach space F, let L,(Q,F) denote the space of strongly measurable, F-
valued, square integrable random variables equipped with the norm topology

Iz, = {ElxI3}?, (2.2)
where E is defined as integration with respect to the probability measure P. Then
L,(Q,F) is also a Hilbert space since F is a Hilbert space. Let T(-) be a continu-
ous nonnegative function on R* and define v = sup{t(t) —t:t > 0} < 0. Let ¢ €
LS([—T,O],X(X), the family of all continuous square integrable stochastic processes
Y (-) such that sup{EIILpII%(} <oo,for -r <t <0.LetI=[-7,T] and M(I,F) denote
the space of J;-adapted stochastic processes defined on I, taking values in F, having
square integrable norms, that are continuous in t on I in the mean square sense. This
is a Banach space with respect to the norm topology

» 1/2
nam@m:{§?ﬂgum4-, £ € M(LF). 23)

Assume the following conditions:
(i) for 0 < x < 1/2, Xy = [D(A%)] is a Banach space with respect to the graph
topology induced by the graph norm

Ixlla = [[A%x]|+[Ix]l, for x € D(A%); (2.4)
(ii) the function f maps X, to X and there exists a constant C > 0 such that

ILf(t,x, )= f(t,x, )|y <C(lx=xlla+ 1y -Fl«),

2.5
1f x|y <C{1+lIxlla+ Iy} VX,¥ € X )

(iii) the function g maps Xy to L(K,X) and there exists a constant C > 0 such that

||g(tnx,y)_g(t:k,j/)HL(ny) = C(||X_-7_CH0<+ Hy_j/”a);

(2.6)
llgt,x, Wl x) < CLL+IxNa+ 17 lla);
(iv) the linear operator W from L%(J,U) into X defined by
T
Wuzj S(T—s)Bu(s)ds (2.7)
0

has an invertible operator W~! defined on X\ ker W (see [9]) and there exist the
positive constants N, N» such that

IBII* < N1, IIW=1)* < N,. (2.8)

Here, L(K,X) is the family of all bounded linear operators from K into X, equipped
with the usual operator norm topology, and w is a 3;-adapted Brownian motion having
a nuclear covariance operator Q € L; (F).
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By the assumptions (i), (ii), and (iii), there exists a unique stochastic process
x(-) € M(I,Xy), that is, a solution of (2.1) (see [1, 8]) such that x(-) is J;-adapted,
measurable, and almost surely that f_TV lx (s)]1%ds < oo, with

t
x(t) =S(t)y(0) +L S(t—s)[(Bu)(s)+f(s,x(s),x(s—71(s)))]ds

t
+JO S(t-5)g(s,x(s),x(s—7(s)))dw(s), t=0, (2.9)

x(t)=y(t), tel[-r,0].

DEFINITION 2.1. The stochastic system (2.1) is said to be controllable on J, if for
every continuous initial random process @ (-) defined on [—7,0], there exists a control
u € L2(J,U) such that the solution of (2.1) satisfies x(T) = x;, where x; and T are
preassigned terminal state and time, respectively. If the system is controllable for all
x1 att =T, it is called completely controllable on J.

3. Main results

THEOREM 3.1. Suppose that conditions (i), (ii), (iii), and (iv) are satisfied, then system
(2.1) is completely controllable on J.

PROOF. Using assumption (iv), define the control
T
u(t) =w-t [xl -S(T)y(0) —J S(T-3)f(s,x(5),x(s—7(s)))ds
0

; (3.1)
_,[o S(T—s)g(s,x(s),x(s—T(s)))dw(s)] (t).

Now, it is shown that when using this control the operator defined by
(dx)(t) =S(t)yw(0)

t T
+L)S(t—u)BW’1 [xl -S(T)y(0) _Jo S(T-5)f(s,x(s),x(s—7(s)))ds
T
—JO S(T—s)g(s,x(s),x(s—T(S)))dw(s)](u)du
t
+JOS(t—s)f(s,x(s),x(s—T(s)))ds

t
+JOS(t—s)g(s,x(s),x(s—T(s)))dw(s), te],

(dx)(t)=w(t), -r<t=<O,
(3.2)

has a fixed point. This fixed point is a solution of (2.1). Clearly (®x)(0) = ¢(0), which
means that the control u(-) steers the semilinear stochastic delay differential system
from the initial state ¢/(-) to x; in time T provided the nonlinear operator ® has a
fixed point.

First, it must be shown that ® maps M (I, Xy) into M (I, X,). Without loss of gener-
ality, assume that 0 € p(A). Otherwise, if 0 ¢ p(A), for the identity operator I add the
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term vI to A giving A, = A+ VI, then 0 € p(A,). This simplifies the graph norm to
1T« = |AXC||, for T € D(A%). Since S(t), t > 0, is an analytic semigroup and A% is a
closed operator, there exist numbers C; > 1 and C, such that

su?||5(t)||f<x) <Ci, ||AS()]|yx) < Cat™®, for t>0. (3.3)
te

Further, |a+Db +c|? <9(lal?+ |b|? +|c|?) for any real numbers a, b, c. Hence, for
xeMU,Xy),

te[-r,0]

E( sup ||(<1>x)(t)l|§)s£( sup |\w(t);|§)<w, for —r <t <0, (3.4)
te[-r,0]

and for t € J,

E(supn(cpx)(t)ni)
te]

< 93tu5)E(||S(t)(ll(0)||i>

+ 915‘ L:S(t —)BW! [x1 —S(T)y(0)

T
_Jo S(T-35)f(s,x(s),x(s—7(s)))ds

2

T
_Jo S(T—s)g(s,x(s),x(s—T(s)))dw(s)](u) du

2

t
+9E‘ JOS(t—s)f(s,x(s),x(s—T(s)))ds

t
+9T,QJOE(||A°‘S(t—s)g(s,x(s),x(s—T(s)))||%(KYX))dS
sgstu}ag(||,4as<t>w<o>||§)
! 2
L ONIN» jo |A%S (T — )| 2
%[ Elall+ Ellas Ty o)1
T T
+<JO ||A°‘S(T—S)Hf(x)ds>EJO ||f(S,X(S),X(S—T(S)))Hids
T
+EJ0 ||A°‘S(T—s)g(s,x(s),x(s—T(S)))dw(s)H;]
t t
+9(L\|A°‘S(t—5)||i(x)ds)EL||f(s,x(s),x(s—T(s)))||ids

t
+9TTQJOE(||A°‘S(t—s)g(s,x(s),x(s—T(s)))||i(KYX))ds
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T(I—le)
(1-2x)

<9CE(|lw(0)][3) + (ON1N2C2)

% [E||x1|<i+C1E(IIW(o>IIi)

> T2(1-)
+[CuC] (1_20(){1+Os<1§p E||x(s)]|%+ sup Ellx(s—1())|5 }»
> T(l 2x) 2 2
+TyQ[2(C¢xC) ](1_20(){1 +OsS1§1_<)tE||x(s)||o(+OsS1§1_<)tE||x(5—T(s))||{x}]

, 20-c0
+9{[C(XC] (1_20()}{1 +Os<1§1<)tE||x(s)Ha+ sup Ellx(s—T(s)) Ha}

T

+9TVQ|:2(C0(C)2]m

{1 + sup E||x(s)\|(2x+ sup E||x(s—‘r(5))|\i}
O<s<t O<s<t
T(1-200)

(1-2x)

TZ(l—O() i
x| Ellalle+ GE(lwOIR) + 1€l g {1+ 2010}

> T(I—er) )
(1-200) {HZHXHM”'X“’}]
5 T2(1—0()
+9[CuC] (1_20(){1+2||x||]2\4(1’Xm)}

> T(1—20() )
+18TVQ{(C0(C) (1_2a)}{1+2\|x\|M(,,XM}

]WI—Za)
(1-2x)
< [Ellxilo+ CQE([lw O)]13) +n(T:Q) | +9n(T,Q),

<9CE(|lw(0)][3) + (ON1N2C2)

+2T,Q(CxC)

<9CE(|[w(0)][%) + (9N1N2Co)

(3.5)
where T, Q represents the trace of the operator Q and
(I—Za) )
n(T,Q) = [CaC] {T+2TVQ}W{1 + 201X gxe0 }- (3.6)

Hence sup;¢; [ (@x) (t) (1% < oo for x € M(I,Xy).

Since g (-) is continuous in [—7,0], to complete the proof it remains to show that
® e C((0,T),L2(9Q,Xy)). To accomplish that, let t € (0,T), h >0 and t +h € J. For
analytic semigroups, there exists a constant vg > 0 such that

1(S(h) =DEllx < vehP||APE]ly  VE € D(AF) 3.7

and for all B > 0 and all € € X with S(¢£)C € D(AP) for t > 0 (see Pazy [10, Theorem
6.13]). Thus, for t > 0, the closedness of A* and the fact that S(t) commutes with A%
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on D(A%) yields that by choosing 8 > 0 such that 0 < x+ < 1/2, we have
Ef|[(@x)(t+h) = (@x)(1)||5}
<9E(|I(S() ~1)S(B) A% (0)]2)

t
+ 915‘ L (S(h) —I)AXS(t —p)BW™!

T
X [xl -S(T)w(0) —JO S(T-35)f(s,x(s),x(s—7(s)))ds

T 2
—jo S<T—s)g(s,x(s>,x(s—r(s)))dw(s)](u) dp

t+h

+9E‘ J AXS(t+h—p)BW!
t

T
X [xl -S(T)y(0) _Jo S(T-5)f(s,x(s),x(s—7(s)))ds

T 2
—JO S(T—s)g(s,x(s),x(s—T(s)))dw(s)](u) du

2

t
+9E JO (S(h) —1)AXS(t—35)f(s,x(s),x(s—T(s)))ds

t+h 2

+9E AXS(t+h—35)f(s,x(s),x(s—T(s)))ds
t o

t 2
+9E JO (S(h)—I)A%S(t—5)g(s,x(s),x(s—T(s)))dw/(s)

L(K,X)
t+h

+9E AXS(t+h—35)g(s,x(s),x(s—T(s)))dw(s)
t

< 9vih?|labs (O |PEl|A*w )]
1 2(x+p)
(tfu)]

x [E(Iall) + (o)) + [CaCT T +2T,0) Ty

2

L(K,X)

t
+9N1N2VEC§+ﬁh2BJO [ d[,l

(1-2x)

< {1+ sup Elle(9)[f+ sup Ellx(s=T(s))I[2}

O=<s<t O=<s

) t+h 1 2x
+9N1N2Co( . [m] du
(1-2x)

x [E(Hlei) +CE([lp)]2) + {[CaC]Z}{ﬂan}i(THm

x {1 + sup E||x(s)|% + SthEHX(S—T(S))HiH

O=<s<t O=<s
22 2B ! 1
+ h°PE J [
IviChip ( ol t=s)

t+h 1 2«
> L _ 2
+9CO(E(L [(Hh_s)] IIf (5,2 (), x (s T(S)))IIMS)

2(x+p) >
] st xsrxts - as)

:|2(0(+ﬁ)

t
+9TrQV§C§+Bh25E<L [ ||g(S,X(S),X(S—T(S)))||i<K‘X)dS>

(t—s)

+9T,QC2E JHh [¥]2a\lg(s x(8),x (s = T()))[F ex,ds
Bl L (trh-s) B L&)
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< 9(VgCg)2(h

2B 5
t) E|[w(0)[[% + 9N1 N2

s(h 28 p(1-20-2B) ) h2-a
X{(VBCM) <?) (1—2a—28 " 0-20)

< {E(|xllz+ CENw O +n(T:0))]

5 h 28 tZ(lfﬂ(*ﬁ) >
#9(vsCCup)’ () m{”ztﬁ”x“)”a}
, h20-o )
+9(CCy) m{uzigmnx(sma}
s h 2B tZ(I*!X*.B) >
+9T7Q(VBCCD(+,3) (?) (I_T_Zﬁ){l-i-ZSSLEI?EHX(S)Ha}

5 h(l—Zu)

+9T,Q(CCy) 1-200)

{1 +25512?E||x(5)||i}

(3.8)

for t € (0,T). Thus, letting h — 0, the desired continuity follows. Hence & maps
M (I, Xy) into itself.

Now, it is shown that for sufficiently small T, defining the interval I leads to a
contraction in M (I, X). Indeed, for x,y € M (I, X,) satisfying x(t) = y(t) = ¢(t) for
—r <t <0 it can be easily seen that

SUpE||(®x) (1) — (®y) (1)]|* < Ko SUpE||x (t) = ¥ (1) ]| %, (3.9)
teJ te]
where
) > T2(172¢x) > T(1720()
K(x—gNlNZCO‘[Co(C] {T+2T7Q}m+9[C,xC] {T+2T7Q}m (310)

Thus, for sufficiently small T, K4 < 1 and & is a contraction in M(I,Xy) and so, by
the Banach fixed point theorem (see [1]), ® has a unique fixed point x € M (I, X4). Any
fixed point of ® is a solution of (2.1) on J satisfying (®x)(t) = x(t) € X, for all @ (-)
and T > 0. Thus, system (2.1) is completely controllable on J. ]

4. Example. Consider a stochastic Burgers-type equation with constant time delay
(i.e., T(t) = 2h > 0). Assume v > 0, Y(t,&) : [-2h,0]1xQ — X = L2[0,1] is a suitable
Jo-measurable process and fort > 0, £ € [0,1],

avi(§)  9°Yi (&)

OYE ()
ar " og2

0

+ Yo () + (Bu) (t) +2t3e~not
Y:(0) =Y:(1) =0, t>0,
Yi(&) =y(t,8), &€l0,1], t € [-2h,0],

1
2

dw (&)

dt (4.1)

with the following assumptions:
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(1) let domA = H?(0,1) N H}(0,1) and (A$)E = v(32Y;(E)/3E?), ¢ € domA, and
let B be a bounded linear operator from the control space U = L?(0,1) into H
satisfying the hypothesis (iv);

(2) define the functions

2
FY(8),Yion(8)) = %8Y5§(§) + Y 2n(8), 42)

g(t’ Yt(E), Yt*Zh(E)) = 2t32_n/\0t,

with )
Ag = inf Ivy@®|° Vy(g)\z ;
yeD@ |y (%)
(3) let w¢ (&) be a Wiener process with a bounded, continuous covariance q(&,C);
namely, there exists a constant ¢ > 0 such that [q(&,Q)| < c.
Then, system (4.1) has an abstract formulation given by the following semilinear
stochastic equation in Hilbert space

(4.3)

d:;gt) = Ax(t) + (Bu) (t) + £ (£, x (), x(t—T(1)))
+g(t,x(t),x(t—1’(t)))dl;}lit)v teJ=10,T], o

x(t)=yw(t), -2h=<t=<O,

where the linear operator A is the infinitesimal generator of a strongly continuous
semigroup e4!, t > 0 in H. Thus (4.4) has a unique solution (see [8]).

All the conditions stated in the Theorem 3.1 are satisfied, and so system (4.1) is
completely controllable on J.
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